
 1

ICFEM 2017, Xi’an China

A Certified Decision Procedure for Tree Shares
(to reason about resource sharing in concurrent programs)

Xuan-Bach Le Thanh-Toan Nguyen Wei-Ngan Chin Aquinas Hobor

School of Computing, National University of Singapore

November 13, 2017

 2

Concurent Separation Logic

1.Reason about correctness of concurrent programs.

2.Precusor: Separation Logic (SL).

3.Simple, Compositional Reasoning.

4.Used in many automatic verification tools:
➔ HIP/SLEEK (Nguyen et al. (2007))
➔ Infer (Calcagno et al. (2015))
➔ Viper (Müller et al. (2016))
➔ VeriFast (Jacobs et al. (2010))
➔ Staring (Windsor et al. (2017))
➔ Caper (Young et al. (2017))

John R. Reynolds Steve Brooke Peter O’Hearn

 3

Some basics

● Maps-to predicate

● Disjoint conjunction

 4

Some basics

Shape inductive predicates

 5

Some basics

Frame Rule

Q
c c

P
P

Q

F F

Frame

 6

Some basics

Parallel Rule

Q
1

c
1P

1

Parallel

Q
2

c
2P

2

Q
1

c
1
|| c

2

P
1

Q
2

P
2

 7

Permissions in CSL

● Fractional maps-to

● Rational permission model :
–

– Join/split permissions:

– Example:

 8

Shortcomings of rational
permissions

Lack of disjointness:

– In traditional SL:

– With rational permissions:

 9

Deformation of shape predicates

Shortcomings of rational
permissions

 10

Poor support of complete decision procedures

– Not finitely axiomatized in first-order logic.

– The addition group is not finitely generated.

– First-order theory is undecidable (Robinson, 1949).

Shortcomings of rational
permissions

 11

Tree share permissions

● By Dockins et al. (2009)

● Boolean binary trees

● Canonical form

 12

Tree addition

● Base cases:

● General case: leaf-wise

 13

Tree permission model

tree shares tree addition

 14

Why permission solver?

 15

Previous work

● Complete procedures for

– SAT:

– IMP:

where

● NP-hard. Reduce to Boolean formulae.

● Correctness proof: small model technique.

● Benchmarked in HIP/SLEEK.

 16

Shortcomings

● Not certified (code bug).

● Only handle restricted form of negation

● Soundness proof for restricted negation contained
a bug (proof bug).

 17

Contributions

We fix the previous issues:
– Complete procedures for SAT and IMP with general

negative constraints:
● SAT:
● IMP:

where

– Certified in Coq.

– New correctness proofs.

– Benchmarked in HIP/SLEEK.

 18

Overview of procedures

 19

Optimization components

PARTITIONER: split problem into independent problems.

 20

Optimization components

BOUNDER + SIMPLIFIER: reduce the problem’s size.

 21

Correctness components

DECOMPOSER: reduce the formula into equivalent formula of height zero

 22

Correctness components

TRANSFORMER + INTERPRETER: transform tree formula of height zero
into equivalent Boolean formula.

False

True

 23

SMT solver component

 24

Correctness proof for SAT

● Reduce into where

each contains a single negative constraint.
● Example:

– Let and

then

 25

Correctness proof for SAT

● Each satisfies the small-model property:

– Small-model property: P has a solution iff it has a small
solution.

– Theorem: Each is satisfiable iff it has a tree solution whose height is
at most .

● Reduce into equivalent Boolean formula.

 26

Example:

–

–

– iff has a solution of height at most 1.

– 4 possible candidates:

Correctness proof for SAT

 27

Reduce into equivalent Boolean formula:

Correctness proof for SAT

 28

Correctness for IMP

● The idea is similar:
– Reduce to smaller problems that satisfy small-

model property.

● More complicated:
– Negative constraints are in both antecedent and

consequent.

 29

Bug-free guarantee

● Certified in Coq.

● Optimization components e.g. partitioner are
generic => reusable.

● With built-in Boolean solver.

● Around 34k LOC.

 30

Experiment and Result

● Benchmark taken from 3 papers
– “Barriers in Concurrent Separation Logic”

(Aquinas Hobor and Cristian Gherghina, 2011).

– “Decision procedures over sophisticated fractional permissions”
(Le et al., 2012).

– “Automated verification of countdownlatch”

(Wei-Ngan Chin et al., 2017).

● Test against our old solver (Le et al. 2012).
● 23 program tests + 111 standalone tests.
● Using HIP/SLEEK.

 31

Experiment and Result
Old solver New solver

Table 1. Evaluation of our procedures using HIP/SLEEK

455.01 434.30534

wrong

 32

Old solver has bugs:

– 534 / 10,252 : 5.2%.

– HIP/SLEEK: code rot, poor error signaling/handling.

– Permission solver: correctness bug for handling
negative constraints.

Experiment and Result

 33

Experiment and Result

New solver:

– Faster (434 seconds vs. 455 seconds): 4.6%.

– Bug-free.

 34

Conclusion

Two decision procedures to handle SAT and
IMP for tree share permissions:

– Certified (bug-free).

– Optimized (faster than old solver).

– Handle general negative constraints.

 35

Future work

New (certified) procedures to handle:
– First-order theory of .

– Formulae from the combined structure of tree share
with addition and multiplication.

Thank you for listening!

 36

Correctness proof for IMP

Checking

– Let be the list of disequations of

– Let be with all equations and without disequations

– Let be with all equations and with a single
disequation

 37

Correctness proof for IMP

Assume .Three cases:

– : is equivalent to

– : is equivalent to

– :

● If (case 2) then Yes.
● Else equivalent to

 38

Correctness proof for IMP

Small model property:

– Theorem: Each

holds iff it holds for all solution of height at most the
height of the constraint.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

