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Concurent Separation Logic

1.Reason about correctness of concurrent programs.

2.Precusor: Separation Logic (SL).

3.Simple, Compositional Reasoning.

4.Used in many automatic verification tools:
➔ HIP/SLEEK (Nguyen et al. (2007))
➔ Infer (Calcagno et al. (2015))
➔ Viper (Müller et al. (2016))
➔ VeriFast (Jacobs et al. (2010))
➔ Staring (Windsor et al. (2017))
➔ Caper (Young et al. (2017))

John R. Reynolds Steve Brooke Peter O’Hearn
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Some basics

●  Maps-to predicate

●  Disjoint conjunction
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Some basics

Shape inductive predicates
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Some basics

Frame Rule
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Some basics

Parallel Rule
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Permissions in CSL

● Fractional maps-to

● Rational permission model              :
–

– Join/split permissions:

– Example:
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Shortcomings of rational
permissions 

Lack of disjointness:

– In traditional SL:

– With rational permissions:
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Deformation of shape predicates

Shortcomings of rational
permissions 
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Poor support of complete decision procedures

– Not finitely axiomatized in first-order logic.

– The addition group         is not finitely generated.

– First-order theory is undecidable (Robinson, 1949).

Shortcomings of rational
permissions 
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Tree share permissions 

● By Dockins et al. (2009)

● Boolean binary trees

● Canonical form
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Tree addition 

● Base cases:

● General case: leaf-wise
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Tree permission model

tree shares tree addition
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Why permission solver?



  15

Previous work

● Complete procedures for 

– SAT:

– IMP:

where 

● NP-hard. Reduce to Boolean formulae.

● Correctness proof: small model technique.

● Benchmarked in HIP/SLEEK.
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Shortcomings

● Not certified (code bug).

● Only handle restricted form of negation

● Soundness proof for restricted negation contained 
a bug (proof bug).
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Contributions

We fix the previous issues:
– Complete procedures for SAT and IMP with general 

negative constraints:
● SAT: 
● IMP:

where  

– Certified in Coq.

– New correctness proofs.

– Benchmarked in HIP/SLEEK.
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Overview of procedures
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Optimization components

PARTITIONER: split problem into independent problems.
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Optimization components

BOUNDER + SIMPLIFIER: reduce the problem’s size.
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Correctness components

DECOMPOSER: reduce the formula into equivalent formula of height zero
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Correctness components

TRANSFORMER + INTERPRETER: transform tree formula of height zero 
into equivalent Boolean formula.

False

True
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SMT solver component
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Correctness proof for SAT

● Reduce              into                  where 

each     contains a single negative constraint.
● Example:

– Let                                            and

then 



  25

Correctness proof for SAT

● Each       satisfies the small-model property:

– Small-model property: P has a solution iff it has a small 
solution.

– Theorem: Each       is satisfiable iff it has a tree solution whose height is 
at most        .

● Reduce into equivalent Boolean formula. 
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Example:

–

–

–                     iff          has a solution of height at most 1.

–   4 possible candidates:               

Correctness proof for SAT
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Reduce into equivalent Boolean formula:

Correctness proof for SAT



  28

Correctness for IMP

● The idea is similar: 
– Reduce to smaller problems that satisfy small-

model property.

● More complicated:
–  Negative constraints are in both antecedent and 

consequent.
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Bug-free guarantee

● Certified in Coq.

● Optimization components e.g. partitioner are 
generic => reusable.

● With built-in Boolean solver.

● Around 34k LOC. 
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Experiment and Result

● Benchmark taken from 3 papers
– “Barriers in Concurrent Separation Logic”

(Aquinas Hobor and Cristian Gherghina, 2011).

– “Decision procedures over sophisticated fractional permissions” 
(Le et al., 2012).

– “Automated verification of countdownlatch”

(Wei-Ngan Chin et al., 2017).

● Test against our old solver (Le et al. 2012).
● 23 program tests + 111 standalone tests.
● Using HIP/SLEEK.
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Experiment and Result
Old solver New solver

Table 1. Evaluation of our procedures using HIP/SLEEK

455.01 434.30534

# wrong
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Old solver has bugs:

– 534  /  10,252 :  5.2%.

– HIP/SLEEK: code rot, poor error signaling/handling.

– Permission solver: correctness bug for handling 
negative constraints.

Experiment and Result
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Experiment and Result

New solver:

– Faster (434 seconds vs. 455 seconds): 4.6%.

– Bug-free.
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Conclusion

Two decision procedures to handle SAT and 
IMP for tree share permissions:

– Certified (bug-free).

– Optimized (faster than old solver).

– Handle general negative constraints.
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Future work

New (certified) procedures to handle:
– First-order theory of            . 

– Formulae from the combined structure of tree share 
with addition and multiplication.

Thank you for listening!
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Correctness proof for IMP

Checking 

– Let     be the list of disequations of 

– Let       be     with all equations and without disequations

– Let        be     with all equations and with a single 
disequation      
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Correctness proof for IMP

Assume                                 .Three cases:

–             : is equivalent to

–                               : is equivalent to

–                                : 

● If                     (case 2) then Yes.
● Else equivalent to 
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Correctness proof for IMP

Small model property:

– Theorem: Each             

holds iff it holds for all solution of height at most the 
height of the constraint.
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