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Decidability and Complexity of Tree Share Formulas

Introduction

tree(x , τ) ∧WRITE(τ)

tree(x , τ1) ∧ READ(τ1) tree(x , τ2) ∧ READ(τ2)

tree(x , τ) ∧WRITE(τ)

∥
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Decidability and Complexity of Tree Share Formulas

Introduction

Shares

Shares are embedded into separation logic to reason about
resource accounting:

addr
τ1⊕τ2↦ val ⇔ addr

τ1↦ val ⋆ addr
τ2↦ val

Allow resources to be split and shared in large scale:

tree(`, τ)
def= (` = null ∧ emp) ∨ ∃`l , `r . (`

τ↦ (`l , `r) ⋆ tree(`l , τ) ⋆ tree(`r , τ))

tree(`, τ1 ⊕ τ2) ⇔ tree(`, τ1) ⋆ tree(`, τ2)

Share policies to reason about permissions for single writer
and multiple readers:

WRITE(τ)
READ(τ)

Write-
Read

READ(τ)
∃τ1, τ2. τ1 ⊕ τ2 = τ ∧

READ(τ1) ∧ READ(τ2)

Split-
Read
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Decidability and Complexity of Tree Share Formulas

Introduction

Shares

Shares enable resource reasoning in concurrent programming

Rational numbers [Boyland (2003)]: disjointness problem
makes tree split equivalence false:
¬(tree(`, τ1 ⊕ τ2) ⇐ tree(`, τ1) ⋆ tree(`, τ2))
Subsets of natural numbers [Parkinson (2005)]

Finite sets: recursion depth is finite
Infinite sets: intersections may not be in the model
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Decidability and Complexity of Tree Share Formulas

Introduction

Tree Share Definition

A tree share τ ∈ T is a boolean binary tree equipped with the
reduction rules R1 and R2 (their inverses are E1,E2 resp.):

τ
def= ○ ∣ ● ∣ τ τ R1 ∶ ● ● ↦ ● R2 ∶ ○ ○ ↦ ○

The tree domain T contains canonical trees which are
irreducible with respect to the reduction rules.

● ● ○ ○ ○

Ri↦ ● ○ ○
Ri↦ ● ○

○ is the empty tree, and ● the full tree.

READ(τ) def= τ ≠ ○ WRITE(τ) def= τ = ●
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Decidability and Complexity of Tree Share Formulas

Introduction

Tree Share Operators

The complement 2:

●1 ○2 ○3
¬↦
○1 ●2 ●3

The Boolean function union ⊔ and intersection ⊓ operator:

● ○ ●
⊔
○ ● ○

Ei↦
●1 ●2 ○3 ●4

⊔
○1 ●2 ○3 ○4

∨↦
●1 ●2 ○3 ●4

Ri↦ ● ○ ●

● ○ ●
⊓
○ ● ○

Ei↦
●1 ●2 ○3 ●4

⊓
○1 ●2 ○3 ○4

∧↦
○1 ●2 ○3 ○4

Ri↦
○ ● ○
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Introduction

Properties of ⊔, ⊓ and 2

M= (⊔,⊓,2, ●, ○) forms a Boolean Algebra [Dockins et al.
(2009)]:

B1a. (τ1 ⊓ τ2) ⊓ τ3 = τ1 ⊓ (τ2 ⊓ τ3) B1b. (τ1 ⊔ τ2) ⊔ τ3 = τ1 ⊔ (τ2 ⊔ τ3) (associativity)
B2a. τ1 ⊓ τ2 = τ2 ⊓ τ1 B2b. τ1 ⊔ τ2 = τ2 ⊔ τ1 (commutativity)
B3a. τ1 ⊓ (τ2 ⊔ τ3) = (τ1 ⊓ τ2) ⊔ (τ1 ⊓ τ3) B3b. τ1 ⊔ (τ2 ⊓ τ3) = (τ1 ⊔ τ2) ⊓ (τ1 ⊔ τ3) (distributivity)
B4a. τ1 ⊓ (τ1 ⊔ τ2) = τ1 B4b. τ1 ⊔ (τ1 ⊓ τ2) = τ1 (absorption)
B5a. τ ⊓ ● = τ B5b. τ ⊔ ○ = τ (identity)
B6a. τ ⊓ τ = ○ B6b. τ ⊔ τ = ● (complement)
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Introduction

Tree Share Operators(cont.)

The partial join function ⊕:

τ1 ⊕ τ2 = τ3 def= τ1 ⊔ τ2 = τ3 ∧ τ1 ⊓ τ2 = ○

● ○ ○ ●
⊕ ○ ● ○

Ei↦
●1 ○2 ○3 ●4

⊕
○1 ○2 ●3 ○4

⊕↦
●1 ○2 ●3 ●4

Ri↦
● ○ ●
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Introduction

Properties of ⊕

O = (T,⊕) for fractional permission in Separation Logic [Dockins
et al. (2009)]:

J1. τ1 ⊕ τ2 = τ3 ⇒ τ1 ⊕ τ2 = τ ′3 ⇒ τ3 = τ ′3 (functionality)
J2. τ1 ⊕ τ2 = τ2 ⊕ τ1 (commutativity)
J3. τ1 ⊕ (τ2 ⊕ τ3) = (τ1 ⊕ τ2) ⊕ τ3 (associativity)
J4. τ1 ⊕ τ2 = τ3 ⇒ τ ′1 ⊕ τ2 = τ3 ⇒ τ1 = τ ′1 (cancellation)
J5. ∃u. ∀τ. τ ⊕ u = τ (unit)
J6. τ1 ⊕ τ1 = τ2 ⇒ τ1 = τ2 (disjointness)

J7. a⊕ b = z ∧ c ⊕ d = z ⇒ ∃ac, ad ,bc,bd .
a b ac

ad bd
bcc

d

ac ⊕ ad = a ∧ bc ⊕ bd = b ∧ ac ⊕ bc = c ∧ ad ⊕ bd = d (cross split)
J8. τ ≠ ○ ⇒ ∃τ1, τ2. τ1 ≠ ○ ∧ τ2 ≠ ○ ∧ τ1 ⊕ τ2 = τ (infinite split)
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Introduction

Tree Share Operators(cont.)

The injection bowtie function & replaces ● with tree:

● ○ ○ ●
& ○ ● =

● ○ ○ ●
& ○ ● =

○ ● ○ ○ ○ ●

Allow resources to be split uniformly:

τ1 ⋅ tree(`, τ2) def= tree(`, τ2 & τ1)

(τ1 ⊕ τ2) ⋅ tree(`, τ) ⇔ τ1 ⋅ tree(`, τ) ⋆ τ2 ⋅ tree(`, τ)
τ1 ⋅ tree(`, τ2 & τ3) ⇔ (τ3 & τ1) ⋅ tree(`, τ2)

& can be hard to think about. Is this equation satisfiable?

v1 & v2 &
○ ● ○ = ○ ● ○

& v2 & v1
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Introduction

Properties of &

S = (&, ●) forms an Monoid with additional properties [Dockins
et al. (2009)]:

M1. (τ1 & τ2) & τ3 = τ1 & (τ2 & τ3) (associativity)
M2. τ & ● = ● & τ = τ (identity)
M3. τ & ○ = ○ & τ = ○ (collapse point)
M4. τ1 & (τ2 ◇ τ3) = (τ1 ◇ τ2) & (τ1 ◇ τ3), ◇ ∈ {⊓,⊔,⊕} (distributivity)
M5. τ & τ1 = τ & τ2 ⇒ τ ≠ ○ ⇒ τ1 = τ2 (left cancellation)
M6. τ1 & τ = τ2 & τ ⇒ τ ≠ ○ ⇒ τ1 = τ2 (right cancellation)

11 / 30



Decidability and Complexity of Tree Share Formulas

Introduction

tree(x , τ)

(● ○ ⊕ ○ ●) ⋅ tree(x , τ)

● ○ ⋅ tree(x , τ) ○ ● ⋅ tree(x , τ)

(● ○ ⊕ ○ ●) ⋅ tree(x , τ)

∥
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Decidability and Complexity results

Outline

1 Introduction

2 Decidability and Complexity results
Model for Countable Atomless Boolean Algebra
From & to string concatenation
Tree Automatic Structures

3 Conclusion
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Decidability and Complexity results

Model for Countable Atomless Boolean Algebra

Tree Shares as Countable Atomless Boolean Algebra

M= (⊔,⊓,2, ●, ○) is Countable Boolean Algebra because the
domain T is countable.

Atomless properties of M:
Let τ1 ≠ τ2, we denote τ1 < τ2 iff τ1 ⊔ τ2 = τ2.
M is atomless if for τ1 < τ3, there exists τ2 such that
τ1 < τ2 < τ3.
Let τ1 =

○ ● ○ and τ3 = ● ○ then τ1 < τ3. We extend τ3

to the shape of τ1:

τ3
Ei↦
● ● ○

then replace one of the ● leaves of τ3 that is not in τ1 with

● ○:

● ● ○ ↦
● ○ ● ○
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Decidability and Complexity results

Model for Countable Atomless Boolean Algebra

Decidability of M
The first-order theory of M is decidable. The lower bound for its
complexity is ⋃c<ω STA(∗,2cn,n) [Kozen (1980)].
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Decidability and Complexity results

From & to string concatenation

Decidability of &

Decidability of S = (T,&)
Let S = (T,&) then:

The existential theory of S is decidable in PSPACE.

The existential theory of S is NP-hard.

The general first-order theory over S is undecidable.

Decidability of S+ = (T/{○},&)
Let S+ = (T/{○},&) then:

The existential theory of S+ is decidable in PSPACE.

The existential theory of S+ is NP-hard.

The general first-order theory over S+ is undecidable.
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Isomorphism between & and ⋅

To prove these results on S+ = (T/{○},&), we will construct an
isomorphism between S+ equations and word equations.

In particular, we will transform & into string concatenation. The
trick is that we must find an “alphabet” for S+ equations.
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Decidability and Complexity results

From & to string concatenation

Review of Word Equations

Let A = {a,b, . . .} be the finite set of alphabet and
V = {v1, v2, . . .} the set of variables.

A word w is a string in (A ∪ V)∗. A word equation E is a pair
of words w1 = w2.

E has a solution if there exists a homomorphism
f ∶ A ∪ V ↦ A∗ that maps each letter in A to itself.

For example, the equation v1v2ab = bav2v1 has a solution:

f (v1) = b, f (v2) = a

The satisfiability problem of word equation: checking whether
a word equation E has a solution.
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Word Equation Results

Decidability and Complexity of Word Equation

The satisfiability problem of word equation is decidable. The
lower bound is NP-complete while the upper bound is
PSPACE [Plandowski (1999)].

The satisfiability of a system of word equations with regular
constraints vi ∈ REGi can be reduced to the satisfiability of a
single word equation [Schulz (1990)].

The existential theory of string concatenation is decidable
with lower bound NP-complete and upper bound PSPACE.
The first-order theory of string concatenation is undecidable
(forklore).
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Tree factorization

Prime trees

A tree τ ∈ T/{●, ○} is prime iff τ = τ1 & τ2 then either τ1 = ● or
τ2 = ●.

A tree share τ can be factorized into prime trees using &:

○
○ ● ○ ● ○

= ○ ● &
○ ● ○ ● ○

= ○ ● & ○ ● ● & ● ○
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Tree factorization(cont.)

Unique factorization

Let τ ∈ T/{○, ●} then there exists a unique sequence of prime trees
τ1, . . . , τn such that:

τ = τ1 & . . . & τn
Furthermore, the factorization problem is in PTIME.

Proof sketch: By induction on the structure of the tree.
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Infinite alphabet

Let Tp ⊂ T be the set of prime trees then Tp is countably
infinite.

Tp is our alphabet for the word equation but we need to
reduce it to finite alphabet.
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Infinite alphabet(cont.)

From infinity to finite

Let Σ be the set of word equations and inequations over infinite
alphabet A then Σ has a solution iff it has a solution over some
finite alphabet B ⊂ A such that:

1 A(Σ) ⊂ B
2 ∣B∣ = ∣A(Σ)∣ + n where n is the number of inequations in Σ.

The choice of the extra letters in B is not important.
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Example

v1 & v2 &
○ ● ○ = ○ ● ○

& v2 & v1

v1 & v2 & ● ○ & ○ ● = ○ ● & ● ○ & v2 & v1

v1v2ab = bav2v1 solution: v1 = b, v2 = a

○ ● & ● ○ & ● ○ & ○ ● = ○ ● & ● ○ & ● ○ & ○ ●

24 / 30



Decidability and Complexity of Tree Share Formulas

Decidability and Complexity results

From & to string concatenation

Example

v1 & v2 &
○ ● ○ = ○ ● ○

& v2 & v1

v1 & v2 & ● ○ & ○ ● = ○ ● & ● ○ & v2 & v1

v1v2ab = bav2v1 solution: v1 = b, v2 = a

○ ● & ● ○ & ● ○ & ○ ● = ○ ● & ● ○ & ● ○ & ○ ●

24 / 30



Decidability and Complexity of Tree Share Formulas

Decidability and Complexity results

From & to string concatenation

Example

v1 & v2 &
○ ● ○ = ○ ● ○

& v2 & v1

v1 & v2 & ● ○ & ○ ● = ○ ● & ● ○ & v2 & v1

v1v2ab = bav2v1

solution: v1 = b, v2 = a

○ ● & ● ○ & ● ○ & ○ ● = ○ ● & ● ○ & ● ○ & ○ ●

24 / 30



Decidability and Complexity of Tree Share Formulas

Decidability and Complexity results

From & to string concatenation

Example

v1 & v2 &
○ ● ○ = ○ ● ○

& v2 & v1

v1 & v2 & ● ○ & ○ ● = ○ ● & ● ○ & v2 & v1

v1v2ab = bav2v1 solution: v1 = b, v2 = a

○ ● & ● ○ & ● ○ & ○ ● = ○ ● & ● ○ & ● ○ & ○ ●

24 / 30



Decidability and Complexity of Tree Share Formulas

Decidability and Complexity results

From & to string concatenation

Example

v1 & v2 &
○ ● ○ = ○ ● ○

& v2 & v1

v1 & v2 & ● ○ & ○ ● = ○ ● & ● ○ & v2 & v1

v1v2ab = bav2v1 solution: v1 = b, v2 = a

○ ● & ● ○ & ● ○ & ○ ● = ○ ● & ● ○ & ● ○ & ○ ●

24 / 30



Decidability and Complexity of Tree Share Formulas

Decidability and Complexity results

From & to string concatenation

Find a decidable fragment for &

Since the first-order theory of S = (T,&) is undecidable, we want
to find a decidable fragment of & together with (⊔,⊓, 2̄).
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Decidability and Complexity results

Tree Automatic Structures

Connection to Tree Automatic Structures

Let &τ be the unary function over trees such that

&τ(τ ′) = τ ′ & τ

Example:
&
○ ●

(● ● ○
) = ● ● ○

& ○ ● =
○ ● ○ ● ○

Tree automatic structure

Let T = (T,⊔,⊓, 2̄,&τ) then T is tree automatic, i.e., its domain
and relations are recognized by tree automata. Consequently, the
first-order theory of T is decidable [Blumensath (1999);
Blumensath and Gradel (2004)].

26 / 30



Decidability and Complexity of Tree Share Formulas

Decidability and Complexity results

Tree Automatic Structures

Connection to Tree Automatic Structures

Let &τ be the unary function over trees such that

&τ(τ ′) = τ ′ & τ
Example:

&
○ ●

(● ● ○
) = ● ● ○

& ○ ● =
○ ● ○ ● ○

Tree automatic structure

Let T = (T,⊔,⊓, 2̄,&τ) then T is tree automatic, i.e., its domain
and relations are recognized by tree automata. Consequently, the
first-order theory of T is decidable [Blumensath (1999);
Blumensath and Gradel (2004)].

26 / 30



Decidability and Complexity of Tree Share Formulas

Decidability and Complexity results

Tree Automatic Structures

Connection to Tree Automatic Structures

Let &τ be the unary function over trees such that

&τ(τ ′) = τ ′ & τ
Example:

&
○ ●

(● ● ○
) = ● ● ○

& ○ ● =
○ ● ○ ● ○

Tree automatic structure

Let T = (T,⊔,⊓, 2̄,&τ) then T is tree automatic, i.e., its domain
and relations are recognized by tree automata. Consequently, the
first-order theory of T is decidable [Blumensath (1999);
Blumensath and Gradel (2004)].

26 / 30



Decidability and Complexity of Tree Share Formulas

Conclusion

Outline

1 Introduction

2 Decidability and Complexity results
Model for Countable Atomless Boolean Algebra
From & to string concatenation
Tree Automatic Structures

3 Conclusion

27 / 30



Decidability and Complexity of Tree Share Formulas

Conclusion

Contributions

We show that M= (⊔,⊓,2, ●, ○) forms a Countably Atomless
Boolean Algebra.

We reduce & to string concatenation.

We show T = (T,⊔,⊓, 2̄,&τ) is tree-automatic.
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Future Work

Complexity of (T,⊓,⊔) (∃-theory and first-order theory).

Decidability of (T,⊓,⊔,&) (∃-theory).

Complexity of T = (T,⊔,⊓, 2̄,&τ) (∃-theory and first-order
theory).

Extension of word equation to tree equation.

Thank you! ,
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Conclusion

Proof sketch:

Let f be a solution of Σ. For each inequation w1 ≠ w2 to hold,
it suffices to have a single position where they differs.

Therefore, there is at most one letter ai /∈ A(Σ) in each
inequation that we need to preserve.

For other letters bi /∈ A(Σ), we simply replace them with a
letter in A(Σ).
As a result, the new solution satisfies the alphabet constraint.
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