Xuan Bach Le¹ Aquinas Hobor¹ Anthony W. Lin²

¹ National University of Singapore 2 University of Oxford

December 14, 2016

1 / 30

 $\mathbf{C} = \{ \mathbf{C} \in \mathbb{R} \mid \mathbf{C} \in \mathbb{R} \mid \mathbf{C} \in \mathbb{R} \text{ and } \mathbf{C} \in$

Shares

Shares are embedded into separation logic to reason about resource accounting:

 $\text{addr} \overset{\tau_1 \oplus \tau_2}{\mapsto} \text{val} \iff \text{addr} \overset{\tau_1}{\mapsto} \text{val} \star \text{addr} \overset{\tau_2}{\mapsto} \text{val}$

Shares

Shares are embedded into separation logic to reason about resource accounting:

$$
\mathsf{addr} \overset{\tau_1 \oplus \tau_2}{\mapsto} \mathsf{val} \quad \Leftrightarrow \quad \mathsf{addr} \overset{\tau_1}{\mapsto} \mathsf{val} \star \mathsf{addr} \overset{\tau_2}{\mapsto} \mathsf{val}
$$

Allow resources to be split and shared in large scale:

$$
\begin{array}{rcl}\n\text{tree}(\ell,\tau) & \stackrel{\text{def}}{=} & (\ell = \text{null} \ \wedge \text{emp}) \ \vee \exists \ell_1, \ell_r. \ (\ell \stackrel{\tau}{\mapsto} (\ell_1, \ell_r) \star \text{tree}(\ell_1, \tau) \star \text{tree}(\ell_r, \tau)) \\
\text{tree}(\ell, \tau_1 \oplus \tau_2) & \Leftrightarrow & \text{tree}(\ell, \tau_1) \star \text{tree}(\ell, \tau_2)\n\end{array}
$$

Shares

Shares are embedded into separation logic to reason about resource accounting:

$$
\mathsf{addr} \overset{\tau_1 \oplus \tau_2}{\mapsto} \mathsf{val} \quad \Leftrightarrow \quad \mathsf{addr} \overset{\tau_1}{\mapsto} \mathsf{val} \star \mathsf{addr} \overset{\tau_2}{\mapsto} \mathsf{val}
$$

Allow resources to be split and shared in large scale:

$$
\begin{array}{rcl}\n\text{tree}(\ell,\tau) & \stackrel{\text{def}}{=} & (\ell = \text{null} \land \text{emp}) \lor \exists \ell_1, \ell_r. \ (\ell \stackrel{\tau}{\mapsto} (\ell_1, \ell_r) \star \text{tree}(\ell_1, \tau) \star \text{tree}(\ell_r, \tau)) \\
\text{tree}(\ell, \tau_1 \oplus \tau_2) & \Leftrightarrow & \text{tree}(\ell, \tau_1) \star \text{tree}(\ell, \tau_2)\n\end{array}
$$

Share policies to reason about permissions for single writer and multiple readers:

 $\mathsf{WRITE}(\tau)$ WRITE - $\overline{\mathsf{READ}(\tau)}$ Read

 $READ(\tau)$ SPLIT-**READ** $\exists \tau_1, \tau_2$. $\tau_1 \oplus \tau_2 = \tau \wedge$ $\overline{\text{READ}}(\tau_1) \wedge \overline{\text{READ}}(\tau_2)$ Ω

3 / 30

Shares enable resource reasoning in concurrent programming

Shares

Shares enable resource reasoning in concurrent programming

■ Rational numbers [Boyland (2003)]: disjointness problem makes tree split equivalence false:

4 / 30

K ロ > K @ > K 등 > K 등 > … 등

 $\neg(\mathsf{tree}(\ell, \tau_1 \oplus \tau_2) \Leftarrow \mathsf{tree}(\ell, \tau_1) \star \mathsf{tree}(\ell, \tau_2))$

Shares

Shares enable resource reasoning in concurrent programming

■ Rational numbers [Boyland (2003)]: disjointness problem makes tree split equivalence false:

 $\neg(\mathsf{tree}(\ell, \tau_1 \oplus \tau_2) \Leftarrow \mathsf{tree}(\ell, \tau_1) \star \mathsf{tree}(\ell, \tau_2))$

- Subsets of natural numbers [Parkinson (2005)]
	- Finite sets: recursion depth is finite
	- Infinite sets: intersections may not be in the model

4 / 30

 $(1 + 4)$

Tree Share Definition

A tree share $\tau \in \mathbb{T}$ is a boolean binary tree equipped with the reduction rules R_1 and R_2 (their inverses are E_1, E_2 resp.):

$$
\tau = \text{det} \quad \circ \mid \bullet \mid \text{det} \quad \tau \quad R_1 : \text{det} \quad R_2 : \text{det} \quad R_3 : \text{det} \quad \tau
$$

 \blacksquare The tree domain $\mathbb T$ contains canonical trees which are irreducible with respect to the reduction rules.

Tree Share Definition

A tree share $\tau \in \mathbb{T}$ is a boolean binary tree equipped with the reduction rules R_1 and R_2 (their inverses are E_1, E_2 resp.):

$$
\tau = \text{det} \quad \circ \mid \bullet \mid \text{det} \quad \tau \quad R_1 : \text{det} \quad R_2 : \text{det} \quad R_3 : \text{det} \quad \tau
$$

 \blacksquare The tree domain $\mathbb T$ contains canonical trees which are irreducible with respect to the reduction rules.

5 / 30

イロト 不優 ト 不思 ト 不思 トー 理

Tree Share Definition

A tree share $\tau \in \mathbb{T}$ is a boolean binary tree equipped with the reduction rules R_1 and R_2 (their inverses are E_1, E_2 resp.):

$$
\tau = \text{det} \quad \circ \mid \bullet \mid \text{det} \quad \tau \quad R_1 : \text{det} \quad R_2 : \text{det} \quad R_3 : \text{det} \quad \tau
$$

 \blacksquare The tree domain $\mathbb T$ contains canonical trees which are irreducible with respect to the reduction rules.

5 / 30

 \blacksquare \circ is the empty tree, and \bullet the full tree.

Tree Share Definition

A tree share $\tau \in \mathbb{T}$ is a boolean binary tree equipped with the reduction rules R_1 and R_2 (their inverses are E_1, E_2 resp.):

$$
\tau = \text{det} \quad \circ \mid \bullet \mid \text{det} \quad \tau \quad R_1 : \text{det} \quad R_2 : \text{det} \quad R_3 : \text{det} \quad \tau
$$

 \blacksquare The tree domain $\mathbb T$ contains canonical trees which are irreducible with respect to the reduction rules.

 \blacksquare \circ is the empty tree, and \bullet the full tree. $\mathsf{READ}(\tau) \quad \stackrel{\mathsf{def}}{=} \quad \tau \neq \circ \qquad \mathsf{WRITE}(\tau) \quad \stackrel{\mathsf{def}}{=} \quad \tau = \bullet$ $\mathsf{READ}(\tau) \quad \stackrel{\mathsf{def}}{=} \quad \tau \neq \circ \qquad \mathsf{WRITE}(\tau) \quad \stackrel{\mathsf{def}}{=} \quad \tau = \bullet$ $\mathsf{READ}(\tau) \quad \stackrel{\mathsf{def}}{=} \quad \tau \neq \circ \qquad \mathsf{WRITE}(\tau) \quad \stackrel{\mathsf{def}}{=} \quad \tau = \bullet$ $\mathsf{READ}(\tau) \quad \stackrel{\mathsf{def}}{=} \quad \tau \neq \circ \qquad \mathsf{WRITE}(\tau) \quad \stackrel{\mathsf{def}}{=} \quad \tau = \bullet$ $\mathsf{READ}(\tau) \quad \stackrel{\mathsf{def}}{=} \quad \tau \neq \circ \qquad \mathsf{WRITE}(\tau) \quad \stackrel{\mathsf{def}}{=} \quad \tau = \bullet$

5 / 30

L[Introduction](#page-12-0)

Tree Share Operators

 \blacksquare The complement $\bar{\square}$:

L[Introduction](#page-13-0)

Tree Share Operators

\blacksquare The complement $\bar{\square}$:

イロト 不優 ト 不思 ト 不思 トー 理 QQQ 6 / 30

[Introduction](#page-14-0)

Tree Share Operators

\blacksquare The complement $\bar{\square}$:

■ The Boolean function union ⊔ and intersection □ operator:

[Introduction](#page-15-0)

Tree Share Operators

\blacksquare The complement $\overline{\square}$:

■ The Boolean function union ⊔ and intersection □ operator:

[Introduction](#page-16-0)

Tree Share Operators

\blacksquare The complement $\overline{\square}$:

■ The Boolean function union ⊔ and intersection □ operator:

K ロ ▶ K @ ▶ K 글 ▶ K 글 ▶ │ 글 │ ◆ Q Q <mark>Q</mark> 6 / 30

Properties of ⊔, ⊓ and \Box

$M = (\sqcup, \sqcap, \overline{\sqcap}, \bullet, \circ)$ forms a Boolean Algebra [Dockins et al. (2009)]:

Tree Share Operators(cont.)

The partial join function ⊕:

Tree Share Operators(cont.)

The partial join function ⊕:

$$
\tau_1 \oplus \tau_2 = \tau_3 \qquad \stackrel{\text{def}}{=} \qquad \tau_1 \sqcup \tau_2 = \tau_3 \land \tau_1 \sqcap \tau_2 = \circ
$$

8 / 30

 2990

イロト 不優 ト 不思 ト 不思 トー 理

Tree Share Operators(cont.)

The partial join function $oplus$:

K ロ X K @ X K 할 X K 할 X (할 X Ω 8 / 30

Properties of ⊕

 $\mathcal{O} = (\mathbb{T}, \oplus)$ for fractional permission in Separation Logic [Dockins et al. (2009)]:

\n $\int 1. \, \tau_1 \oplus \tau_2 = \tau_3 \Rightarrow \tau_1 \oplus \tau_2 = \tau'_3 \Rightarrow \tau_3 = \tau'_3$ \n	\n $\int 2. \, \tau_1 \oplus \tau_2 = \tau_2 \oplus \tau_1$ \n	\n $\int 3. \, \tau_1 \oplus (\tau_2 \oplus \tau_3) = (\tau_1 \oplus \tau_2) \oplus \tau_3$ \n	\n $\int 4. \, \tau_1 \oplus \tau_2 = \tau_3 \Rightarrow \tau'_1 \oplus \tau_2 = \tau_3 \Rightarrow \tau_1 = \tau'_1$ \n	\n $\int 5. \, \exists u. \, \forall \tau. \, \tau \oplus u = \tau$ \n	\n $\int 6. \, \tau_1 \oplus \tau_1 = \tau_2 \Rightarrow \tau_1 = \tau_2$ \n	\n $\int 6. \, \tau_1 \oplus \tau_1 = \tau_2 \Rightarrow \tau_1 = \tau_2$ \n	\n $\int 6. \, \tau_1 \oplus \tau_1 = \tau_2 \Rightarrow \tau_1 = \tau_2$ \n	\n $\int 6. \, \tau_1 \oplus \tau_1 = \tau_2 \Rightarrow \tau_1 = \tau_2$ \n	\n $\int 6. \, \tau_1 \oplus \tau_2 = \tau$ \n	\n $\int 6. \, \tau_1 \oplus \tau_2 = \tau$ \n	\n $\int 6. \, \tau_1 \oplus \tau_2 = \tau$ \n	\n $\int 3. \, \tau_1 \neq 0 \Rightarrow \tau_1 \neq 0 \land \tau_2 \neq 0 \land \tau_1 \oplus \tau_2 = \tau$ \n	\n $\int 6. \, \tau_1 \oplus \tau_2 = \tau$ \n	\n $\int 10 \, \text{finite split}$ \n
--	--	--	--	--	--	--	--	--	--	--	--	--	--	--

K ロ X K @ X K 경 X X 경 X X 경 209 9 / 30

Tree Share Operators(cont.)

The injection bowtie function \bowtie replaces \bullet with tree:

Tree Share Operators(cont.)

The injection bowtie function \bowtie replaces \bullet with tree:

Tree Share Operators(cont.)

The injection bowtie function \bowtie replaces \bullet with tree:

Allow resources to be split uniformly:

$$
\tau_1 \cdot \text{tree}(\ell, \tau_2) \qquad \overset{\text{def}}{=} \qquad \text{tree}(\ell, \tau_2 \bowtie \tau_1)
$$
\n
$$
(\tau_1 \oplus \tau_2) \cdot \text{tree}(\ell, \tau) \qquad \Leftrightarrow \qquad \tau_1 \cdot \text{tree}(\ell, \tau) \star \tau_2 \cdot \text{tree}(\ell, \tau)
$$
\n
$$
\tau_1 \cdot \text{tree}(\ell, \tau_2 \bowtie \tau_3) \qquad \Leftrightarrow \qquad (\tau_3 \bowtie \tau_1) \cdot \text{tree}(\ell, \tau_2)
$$

10 / 30

 Ω

イロト 不優 ト 不思 ト 不思 トー 理

Tree Share Operators(cont.)

The injection bowtie function \bowtie replaces \bullet with tree:

Allow resources to be split uniformly:

$$
\tau_1 \cdot \text{tree}(\ell, \tau_2) \qquad \overset{\text{def}}{=} \qquad \text{tree}(\ell, \tau_2 \bowtie \tau_1)
$$
\n
$$
(\tau_1 \oplus \tau_2) \cdot \text{tree}(\ell, \tau) \qquad \Leftrightarrow \qquad \tau_1 \cdot \text{tree}(\ell, \tau) \star \tau_2 \cdot \text{tree}(\ell, \tau)
$$
\n
$$
\tau_1 \cdot \text{tree}(\ell, \tau_2 \bowtie \tau_3) \qquad \Leftrightarrow \qquad (\tau_3 \bowtie \tau_1) \cdot \text{tree}(\ell, \tau_2)
$$

 \bowtie can be hard to think about. Is this equation satisfiable?

Properties of \bowtie

 $S = (\infty, \bullet)$ forms an Monoid with additional properties [Dockins et al. (2009)]:

M1. $(\tau_1 \bowtie \tau_2) \bowtie \tau_3 = \tau_1 \bowtie (\tau_2 \bowtie \tau_3)$ (associativity) $M2. \tau \otimes \cdot = \cdot \otimes \tau = \tau$ (identity) $M3. \tau \bowtie \circ = \circ \bowtie \tau = \circ$ (collapse point) M4. $\tau_1 \Join (\tau_2 \circ \tau_3) = (\tau_1 \circ \tau_2) \Join (\tau_1 \circ \tau_3), \circ \in {\{\sqcap, \sqcup, \oplus\}}$ (distributivity) $M5. \tau \times \tau_1 = \tau \times \tau_2 \Rightarrow \tau \neq 0 \Rightarrow \tau_1 = \tau_2$ (left cancellation) M6. $\tau_1 \Join \tau = \tau_2 \Join \tau \Rightarrow \tau \neq \circ \Rightarrow \tau_1 = \tau_2$ (right cancellation)

L[Introduction](#page-27-0)

イロト 不優 ト 不思 ト 不思 トー 理 299 12 / 30

[Decidability and Complexity results](#page-28-0)

Outline

[Introduction](#page-1-0)

2 [Decidability and Complexity results](#page-28-0)

- **[Model for Countable Atomless Boolean Algebra](#page-29-0)**
- From \Join [to string concatenation](#page-35-0)
- **[Tree Automatic Structures](#page-62-0)**

[Conclusion](#page-65-0)

[Decidability and Complexity results](#page-29-0)

[Model for Countable Atomless Boolean Algebra](#page-29-0)

Tree Shares as Countable Atomless Boolean Algebra

 \blacksquare $\mathcal{M} = (\sqcup, \sqcap, \overline{\sqcap}, \bullet, \circ)$ is Countable Boolean Algebra because the domain T is countable.

[Decidability and Complexity results](#page-30-0)

[Model for Countable Atomless Boolean Algebra](#page-30-0)

Tree Shares as Countable Atomless Boolean Algebra

- $\mathbf{M} = (\sqcup, \sqcap, \overline{\sqcap}, \bullet, \circ)$ is Countable Boolean Algebra because the domain T is countable.
- Atomless properties of \mathcal{M} :
	- Let $\tau_1 \neq \tau_2$, we denote $\tau_1 \sqsubset \tau_2$ iff $\tau_1 \sqcup \tau_2 = \tau_2$.

[Decidability and Complexity results](#page-31-0)

[Model for Countable Atomless Boolean Algebra](#page-31-0)

Tree Shares as Countable Atomless Boolean Algebra

- $\mathbf{M} = (\sqcup, \sqcap, \overline{\sqcap}, \bullet, \circ)$ is Countable Boolean Algebra because the domain T is countable.
- Atomless properties of \mathcal{M} :
	- Let $\tau_1 \neq \tau_2$, we denote $\tau_1 \sqsubset \tau_2$ iff $\tau_1 \sqcup \tau_2 = \tau_2$.
	- \blacksquare M is atomless if for $\tau_1 \sqsubset \tau_3$, there exists τ_2 such that

 $\tau_1 \sqsubset \tau_2 \sqsubset \tau_3$.

[Decidability and Complexity results](#page-32-0)

[Model for Countable Atomless Boolean Algebra](#page-32-0)

Tree Shares as Countable Atomless Boolean Algebra

- $\mathbf{M} = (\sqcup, \sqcap, \overline{\sqcap}, \bullet, \circ)$ is Countable Boolean Algebra because the domain T is countable.
- Atomless properties of \mathcal{M} :
	- Let $\tau_1 \neq \tau_2$, we denote $\tau_1 \sqsubset \tau_2$ iff $\tau_1 \sqcup \tau_2 = \tau_2$.
	- \blacksquare M is atomless if for $\tau_1 \sqsubset \tau_3$, there exists τ_2 such that
	- $τ_1 ⊡ τ_2 ⊡ τ_3$. Let τ_1 = \sim and $\tau_3 = \sim$ then $\tau_1 \sqsubset \tau_3$. We extend τ_3

to the shape of τ_1 :

14 / 30

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | 19 Q Q

[Decidability and Complexity results](#page-33-0)

[Model for Countable Atomless Boolean Algebra](#page-33-0)

Tree Shares as Countable Atomless Boolean Algebra

- $\mathbf{M} = (\sqcup, \sqcap, \overline{\sqcap}, \bullet, \circ)$ is Countable Boolean Algebra because the domain T is countable.
- Atomless properties of \mathcal{M} :
	- Let $\tau_1 \neq \tau_2$, we denote $\tau_1 \sqsubset \tau_2$ iff $\tau_1 \sqcup \tau_2 = \tau_2$.
	- \blacksquare M is atomless if for $\tau_1 \sqsubset \tau_3$, there exists τ_2 such that
		- $τ_1 ⊡ τ_2 ⊡ τ_3$.
	- Let τ_1 = \sim and $\tau_3 = \sim$ then $\tau_1 \sqsubset \tau_3$. We extend τ_3

to the shape of τ_1 :

then replace one of the \bullet leaves of τ_3 that is not in τ_1 with \bullet 0 :

[Decidability and Complexity results](#page-34-0)

[Model for Countable Atomless Boolean Algebra](#page-34-0)

Decidability of M

The first-order theory of M is decidable. The lower bound for its complexity is $\bigcup_{c<\omega} \mathsf{STA}(*, 2^{cn}, n)$ [Kozen (1980)].

15 / 30

 Ω

K ロ X K @ X K 할 X K 할 X (할)

[Decidability and Complexity results](#page-35-0)

 \Box From \Join [to string concatenation](#page-35-0)

Decidability of \Join

Decidability of $S = (\mathbb{T}, \bowtie)$

Let $S = (\mathbb{T}, \bowtie)$ then:

- \blacksquare The existential theory of S is decidable in PSPACE.
- The existential theory of S is NP-hard.
- **The general first-order theory over S** is undecidable.
 \Box [Decidability and Complexity results](#page-36-0)

 L From \bowtie [to string concatenation](#page-36-0)

Decidability of \Join

Decidability of $S = (\mathbb{T}, \bowtie)$

Let $S = (\mathbb{T}, \bowtie)$ then:

- The existential theory of S is decidable in PSPACE.
- **The existential theory of S is NP-hard.**
- **The general first-order theory over S** is undecidable.

Decidability of $S^+ = (\mathbb{T} \setminus \{ \circ \}, \bowtie)$

Let $S^+ = (\mathbb{T} \setminus \{ \circ \}, \bowtie)$ then:

- The existential theory of S^+ is decidable in PSPACE.
- The existential theory of S^+ is NP-hard.
- The general first-order theory over \mathcal{S}^+ is undecidable.

4 0 X 4 @ X 4 B X 4 B X 1 B

[Decidability and Complexity results](#page-37-0)

 L From \bowtie [to string concatenation](#page-37-0)

Isomorphism between & and ⋅

To prove these results on \mathcal{S}^+ = $(\mathbb{T}\backslash\{\circ\},\ast)$, we will construct an isomorphism between \mathcal{S}^+ equations and word equations.

[Decidability and Complexity results](#page-38-0)

 L From \bowtie [to string concatenation](#page-38-0)

Isomorphism between & and ⋅

To prove these results on \mathcal{S}^+ = $(\mathbb{T}\backslash\{\circ\},\ast)$, we will construct an isomorphism between \mathcal{S}^+ equations and word equations.

In particular, we will transform ∞ into string concatenation. The trick is that we must find an "alphabet" for \mathcal{S}^+ equations.

[Decidability and Complexity results](#page-39-0)

 $\overline{}$ From $\overline{}$ [to string concatenation](#page-39-0)

Review of Word Equations

Let $A = \{a, b, ...\}$ be the finite set of alphabet and $V = \{v_1, v_2, \ldots\}$ the set of variables.

L [Decidability and Complexity results](#page-40-0)

 L From \bowtie [to string concatenation](#page-40-0)

Review of Word Equations

- Let $A = \{a, b, ...\}$ be the finite set of alphabet and $V = \{v_1, v_2, \ldots\}$ the set of variables.
- A word w is a string in $(\mathcal{A} \cup \mathcal{V})^*$. A word equation E is a pair of words $w_1 = w_2$.

[Decidability and Complexity results](#page-41-0)

 L From \bowtie [to string concatenation](#page-41-0)

Review of Word Equations

- Let $A = \{a, b, ...\}$ be the finite set of alphabet and $V = \{v_1, v_2, \ldots\}$ the set of variables.
- A word w is a string in $(\mathcal{A} \cup \mathcal{V})^*$. A word equation E is a pair of words $w_1 = w_2$.
- E has a solution if there exists a homomorphism $f: \mathcal{A} \cup \mathcal{V} \mapsto \mathcal{A}^*$ that maps each letter in \mathcal{A} to itself.

L [Decidability and Complexity results](#page-42-0)

 L From \bowtie [to string concatenation](#page-42-0)

Review of Word Equations

- Let $A = \{a, b, ...\}$ be the finite set of alphabet and $V = \{v_1, v_2, \ldots\}$ the set of variables.
- A word w is a string in $(\mathcal{A} \cup \mathcal{V})^*$. A word equation E is a pair of words $w_1 = w_2$.
- E has a solution if there exists a homomorphism $f: \mathcal{A} \cup \mathcal{V} \mapsto \mathcal{A}^*$ that maps each letter in \mathcal{A} to itself.
- For example, the equation $v_1v_2ab = bav_2v_1$ has a solution:

$$
f(v_1)=b, f(v_2)=a
$$

18 / 30

KORK EX KEY A BY A GAA

 \Box [Decidability and Complexity results](#page-43-0)

 L From \bowtie [to string concatenation](#page-43-0)

Review of Word Equations

- Let $A = \{a, b, ...\}$ be the finite set of alphabet and $V = \{v_1, v_2, \ldots\}$ the set of variables.
- A word w is a string in $(\mathcal{A} \cup \mathcal{V})^*$. A word equation E is a pair of words $w_1 = w_2$.
- E has a solution if there exists a homomorphism $f: \mathcal{A} \cup \mathcal{V} \mapsto \mathcal{A}^*$ that maps each letter in \mathcal{A} to itself.
- For example, the equation $v_1v_2ab = bav_2v_1$ has a solution:

$$
f(v_1)=b, f(v_2)=a
$$

The satisfiability problem of word equation: checking whether a word equation E has a solution.

[Decidability and Complexity results](#page-44-0)

 L From \bowtie [to string concatenation](#page-44-0)

Word Equation Results

Decidability and Complexity of Word Equation

■ The satisfiability problem of word equation is decidable. The lower bound is NP-complete while the upper bound is PSPACE [Plandowski (1999)].

 \Box [Decidability and Complexity results](#page-45-0)

 L From \bowtie [to string concatenation](#page-45-0)

Word Equation Results

Decidability and Complexity of Word Equation

- The satisfiability problem of word equation is decidable. The lower bound is NP-complete while the upper bound is PSPACE [Plandowski (1999)].
- \blacksquare The satisfiability of a system of word equations with regular constraints $v_i \in \text{REG}_i$ can be reduced to the satisfiability of a single word equation [Schulz (1990)].

L [Decidability and Complexity results](#page-46-0)

 L From \bowtie [to string concatenation](#page-46-0)

Word Equation Results

Decidability and Complexity of Word Equation

- The satisfiability problem of word equation is decidable. The lower bound is NP-complete while the upper bound is PSPACE [Plandowski (1999)].
- \blacksquare The satisfiability of a system of word equations with regular constraints $v_i \in \text{REG}_i$ can be reduced to the satisfiability of a single word equation [Schulz (1990)].
- The existential theory of string concatenation is decidable with lower bound NP-complete and upper bound PSPACE. The first-order theory of string concatenation is undecidable (forklore).

[Decidability and Complexity results](#page-47-0)

 L From \bowtie [to string concatenation](#page-47-0)

Tree factorization

Prime trees

A tree $\tau \in \mathbb{T} \setminus \{ \bullet, \circ \}$ is prime iff $\tau = \tau_1 \bowtie \tau_2$ then either $\tau_1 = \bullet$ or $\tau_2 = \bullet$.

[Decidability and Complexity results](#page-48-0)

 $\overline{}$ From $\overline{}$ [to string concatenation](#page-48-0)

Tree factorization

Prime trees

A tree $\tau \in \mathbb{T} \setminus \{ \bullet, \circ \}$ is prime iff $\tau = \tau_1 \bowtie \tau_2$ then either $\tau_1 = \bullet$ or $\tau_2 = \bullet$.

20 / 30

K ロ ▶ K @ ▶ K 할 > K 할 > → 할 → ⊙ Q ⊙

A tree share τ can be factorized into prime trees using ∞ :

[Decidability and Complexity results](#page-49-0)

 $\overline{}$ From $\overline{}$ [to string concatenation](#page-49-0)

Tree factorization

Prime trees

A tree $\tau \in \mathbb{T} \setminus \{ \bullet, \circ \}$ is prime iff $\tau = \tau_1 \bowtie \tau_2$ then either $\tau_1 = \bullet$ or $\tau_2 = \bullet$.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ (할) 900

A tree share τ can be factorized into prime trees using ∞ :

[Decidability and Complexity results](#page-50-0)

 $\overline{}$ From $\overline{}$ [to string concatenation](#page-50-0)

Tree factorization

Prime trees

A tree $\tau \in \mathbb{T} \setminus \{ \bullet, \circ \}$ is prime iff $\tau = \tau_1 \bowtie \tau_2$ then either $\tau_1 = \bullet$ or $\tau_2 = \bullet$.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ (할) 900

A tree share τ can be factorized into prime trees using ∞ :

[Decidability and Complexity results](#page-51-0)

 $\overline{}$ From $\overline{}$ [to string concatenation](#page-51-0)

Tree factorization

Prime trees

A tree $\tau \in \mathbb{T} \setminus \{ \bullet, \circ \}$ is prime iff $\tau = \tau_1 \bowtie \tau_2$ then either $\tau_1 = \bullet$ or $\tau_2 = \bullet$.

A tree share τ can be factorized into prime trees using ∞ :

20 / 30

K ロ X K @ X K 할 X K 할 X (할

[Decidability and Complexity results](#page-52-0)

 \Box From \Join [to string concatenation](#page-52-0)

Tree factorization(cont.)

Unique factorization

Let $\tau \in \mathbb{T} \backslash \{ \circ, \bullet \}$ then there exists a unique sequence of prime trees τ_1, \ldots, τ_n such that:

 $\tau = \tau_1 \bowtie \ldots \bowtie \tau_n$

21 / 30

K ロ X K @ X K 경 X X 경 X X 경

Furthermore, the factorization problem is in PTIME.

Proof sketch: By induction on the structure of the tree.

[Decidability and Complexity results](#page-53-0)

 L From $\overline{}$ [to string concatenation](#page-53-0)

Infinite alphabet

Let $\mathbb{T}_p \subset \mathbb{T}$ be the set of prime trees then \mathbb{T}_p is countably infinite.

L [Decidability and Complexity results](#page-54-0)

 L From \bowtie [to string concatenation](#page-54-0)

- **■** Let \mathbb{T}_p ⊂ \mathbb{T} be the set of prime trees then \mathbb{T}_p is countably infinite.
- \blacksquare \blacksquare is our alphabet for the word equation but we need to reduce it to finite alphabet.

 \Box [Decidability and Complexity results](#page-55-0)

 L From \bowtie [to string concatenation](#page-55-0)

Infinite alphabet(cont.)

From infinity to finite

Let Σ be the set of word equations and inequations over infinite alphabet A then Σ has a solution iff it has a solution over some finite alphabet $\mathcal{B} \subset \mathcal{A}$ such that:

- \blacksquare $\mathcal{A}(\Sigma) \subset \mathcal{B}$
- **2** | \mathcal{B} | = $|\mathcal{A}(\Sigma)|$ + *n* where *n* is the number of inequations in Σ . The choice of the extra letters in β is not important.

[Decidability and Complexity results](#page-56-0)

 $L_{\text{From } M}$ [to string concatenation](#page-56-0)

Example

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ① 할 → ① 의 ① 24 / 30

L [Decidability and Complexity results](#page-57-0)

 $\overline{}$ From $\overline{}$ [to string concatenation](#page-57-0)

Example

[Decidability and Complexity results](#page-58-0)

 $\overline{}$ From $\overline{}$ [to string concatenation](#page-58-0)

Example

[Decidability and Complexity results](#page-59-0)

 L From \bowtie [to string concatenation](#page-59-0)

Example

[Decidability and Complexity results](#page-60-0)

 L From \bowtie [to string concatenation](#page-60-0)

Example

[Decidability and Complexity results](#page-61-0)

 L From \bowtie [to string concatenation](#page-61-0)

Find a decidable fragment for \bowtie

Since the first-order theory of $S = (\mathbb{T}, \infty)$ is undecidable, we want to find a decidable fragment of \Join together with $(\sqcup, \sqcap, \bar{\sqcap})$.

[Decidability and Complexity results](#page-62-0)

 L_{Tree} Automatic Structures

Connection to Tree Automatic Structures

Let \mathbb{R}_{τ} be the unary function over trees such that

$$
\bowtie_\tau(\tau') = \tau' \bowtie \tau
$$

26 / 30

 Ω

イロト 不優 ト 不思 ト 不思 トー 温

[Decidability and Complexity results](#page-63-0)

L [Tree Automatic Structures](#page-63-0)

Connection to Tree Automatic Structures

Let α_{τ} be the unary function over trees such that

$$
\bowtie_{\tau}(\tau') = \tau' \bowtie \tau
$$

 \Box [Decidability and Complexity results](#page-64-0)

[Tree Automatic Structures](#page-64-0)

Connection to Tree Automatic Structures

Let α_{τ} be the unary function over trees such that

$$
\bowtie_{\tau}(\tau') = \tau' \bowtie \tau
$$

Tree automatic structure

Let $\mathcal{T} = (\mathbb{T}, \sqcup, \sqcap, \bar{\sqsubset}, \bowtie_{\tau})$ then $\mathcal T$ is tree automatic, *i.e.*, its domain and relations are recognized by tree automata. Consequently, the first-order theory of T is decidable [Blumensath (1999); Blumensath and Gradel (2004)].

Outline

1 [Introduction](#page-1-0)

2 [Decidability and Complexity results](#page-28-0)

- **Nodel for Countable Atomless Boolean Algebra**
- \blacksquare From \bowtie [to string concatenation](#page-35-0)
- **[Tree Automatic Structures](#page-62-0)**

3 [Conclusion](#page-65-0)

- We show that $M = (\sqcup, \sqcap, \sqsupseteq, \bullet, \circ)$ forms a Countably Atomless Boolean Algebra.
- \blacksquare We reduce \bowtie to string concatenation.
- We show $\mathcal{T} = (\mathbb{T}, \sqcup, \sqcap, \sqsupseteq, \bowtie_{\tau})$ is tree-automatic.

 $\mathsf{L}_{\mathsf{Conclusion}}$ $\mathsf{L}_{\mathsf{Conclusion}}$ $\mathsf{L}_{\mathsf{Conclusion}}$

Future Work

- Complexity of $(\mathbb{T},\sqcap,\sqcup)$ (∃-theory and first-order theory).
- Decidability of $(\mathbb{T}, \sqcap, \sqcup, \bowtie)$ (\exists -theory).
- Complexity of $\mathcal{T} = (\mathbb{T}, \sqcup, \sqcap, \sqsupseteq, \bowtie_{\tau})$ (\exists -theory and first-order theory).
- Extension of word equation to tree equation.

Thank you! \odot

 $L_{\text{Conclusion}}$ $L_{\text{Conclusion}}$ $L_{\text{Conclusion}}$

Proof sketch:

Let f be a solution of Σ . For each inequation $w_1 \neq w_2$ to hold, it suffices to have a single position where they differs.

Proof sketch:

- **Let f** be a solution of Σ . For each inequation $w_1 \neq w_2$ to hold, it suffices to have a single position where they differs.
- **■** Therefore, there is at most one letter $a_i \notin A(\Sigma)$ in each inequation that we need to preserve.

Proof sketch:

- **■** Let *f* be a solution of Σ. For each inequation $w_1 \neq w_2$ to hold, it suffices to have a single position where they differs.
- **■** Therefore, there is at most one letter $a_i \notin A(\Sigma)$ in each inequation that we need to preserve.
- For other letters $b_i \notin A(\Sigma)$, we simply replace them with a letter in $\mathcal{A}(\Sigma)$.

Proof sketch:

- **Let f** be a solution of Σ . For each inequation $w_1 \neq w_2$ to hold, it suffices to have a single position where they differs.
- **■** Therefore, there is at most one letter $a_i \notin A(\Sigma)$ in each inequation that we need to preserve.
- For other letters $b_i \notin A(\Sigma)$, we simply replace them with a letter in $\mathcal{A}(\Sigma)$.
- As a result, the new solution satisfies the alphabet constraint.
L[References](#page-72-0)

- A. Blumensath. Automatic Structures. PhD thesis, RWTH Aachen, 1999.
- A. Blumensath and E. Gradel. Finite presentations of infinite structures: automata and interpretations. In Theory of Computer Systems, pages 641–674, 2004.
- John Boyland. Checking interference with fractional permissions. In Static Analysis, 10th International Symposium, SAS 2003, San Diego, CA, USA, June 11-13, 2003, Proceedings, pages 55–72, 2003. doi: 10.1007/3-540-44898-5 4. URL http://dx.doi.org/10.1007/3-540-44898-5_4.
- Robert Dockins, Aquinas Hobor, and Andrew W. Appel. A fresh look at separation algebras and share accounting. In Programming Languages and Systems, 7th Asian Symposium, APLAS 2009, Seoul, Korea, December 14-16, 2009. Proceedings, pages 161–177, 2009. doi: 10.1007/978-3-642-10672-9 13. URL http://dx.doi.org/10.1007/978-3-642-10672-9_13.

 $\mathsf{\mathsf{L}}$ [Conclusion](#page-73-0)

- Dexter Kozen. Complexity of boolean algebras. In Theoretical Computer Science 10, pages 221–247, 1980.
- Matthew Parkinson. Local Reasoning for Java. PhD thesis, University of Cambridge, 2005.
- Wojciech Plandowski. Satisfiability of word equations with constants is in PSPACE. In 40th Annual Symposium on Foundations of Computer Science, FOCS '99, 17-18 October, 1999, New York, NY, USA, pages 495–500, 1999. doi: 10.1109/SFFCS.1999.814622. URL <http://dx.doi.org/10.1109/SFFCS.1999.814622>.
- Klaus U. Schulz. Makanin's algorithm for word equations two improvements and a generalization. In Word Equations and Related Topics, First International Workshop, IWWERT '90, Tübingen, Germany, October 1-3, 1990, Proceedings, pages 85–150, 1990. doi: 10.1007/3-540-55124-7 4. URL http://dx.doi.org/10.1007/3-540-55124-7_4.