Xuan Bach Le¹ Aquinas Hobor¹ Anthony W. Lin²

¹ National University of Singapore ² University of Oxford

December 14, 2016

Shares

Shares are embedded into separation logic to reason about resource accounting:

addr $\stackrel{\tau_1 \oplus \tau_2}{\mapsto}$ val \Leftrightarrow addr $\stackrel{\tau_1}{\mapsto}$ val \star addr $\stackrel{\tau_2}{\mapsto}$ val

Shares

Shares are embedded into separation logic to reason about resource accounting:

addr
$$\stackrel{\tau_1 \oplus \tau_2}{\mapsto}$$
 val \Leftrightarrow addr $\stackrel{\tau_1}{\mapsto}$ val \star addr $\stackrel{\tau_2}{\mapsto}$ val

Allow resources to be split and shared in large scale:

$$\operatorname{tree}(\ell,\tau) \stackrel{\text{def}}{=} (\ell = \operatorname{null} \land \operatorname{emp}) \lor \exists \ell_l, \ell_r. \ (\ell \stackrel{\tau}{\mapsto} (\ell_l, \ell_r) \star \operatorname{tree}(\ell_l, \tau) \star \operatorname{tree}(\ell_r, \tau))$$
$$\operatorname{tree}(\ell, \tau_1 \oplus \tau_2) \iff \operatorname{tree}(\ell, \tau_1) \star \operatorname{tree}(\ell, \tau_2)$$

Shares

Shares are embedded into separation logic to reason about resource accounting:

addr
$$\stackrel{\tau_1 \oplus \tau_2}{\mapsto}$$
 val \Leftrightarrow addr $\stackrel{\tau_1}{\mapsto}$ val \star addr $\stackrel{\tau_2}{\mapsto}$ val

Allow resources to be split and shared in large scale:

$$\operatorname{tree}(\ell,\tau) \stackrel{\text{def}}{=} (\ell = \operatorname{null} \land \operatorname{emp}) \lor \exists \ell_l, \ell_r. \ (\ell \stackrel{\tau}{\mapsto} (\ell_l, \ell_r) \star \operatorname{tree}(\ell_l, \tau) \star \operatorname{tree}(\ell_r, \tau))$$
$$\operatorname{tree}(\ell, \tau_1 \oplus \tau_2) \iff \operatorname{tree}(\ell, \tau_1) \star \operatorname{tree}(\ell, \tau_2)$$

Share policies to reason about permissions for single writer and multiple readers:

 $\frac{\mathsf{WRITE}(\tau)}{\mathsf{READ}(\tau)} \underset{\mathrm{READ}}{\mathrm{WRITE-}}$

 $\frac{\mathsf{READ}(\tau)}{\exists \tau_1, \tau_2. \ \tau_1 \oplus \tau_2 = \tau \land} \xrightarrow{\mathsf{SPLIT-}}_{\mathsf{READ}}$ $\frac{\mathsf{READ}(\tau_1) \land \mathsf{READ}(\tau_2)}{\mathsf{READ}(\tau_2)}$

Decidability and Complexity of Tree Share Formulas	
- Introduction	
Shares	

Shares enable resource reasoning in concurrent programming

Shares

Shares enable resource reasoning in concurrent programming

 Rational numbers [Boyland (2003)]: disjointness problem makes tree split equivalence false:

 $\neg \big(\operatorname{tree}(\ell, \tau_1 \oplus \tau_2) \Leftarrow \operatorname{tree}(\ell, \tau_1) \star \operatorname{tree}(\ell, \tau_2) \big)$

Shares

Shares enable resource reasoning in concurrent programming

 Rational numbers [Boyland (2003)]: disjointness problem makes tree split equivalence false:

 $\neg \big(\operatorname{tree}(\ell, \tau_1 \oplus \tau_2) \Leftarrow \operatorname{tree}(\ell, \tau_1) \star \operatorname{tree}(\ell, \tau_2) \big)$

- Subsets of natural numbers [Parkinson (2005)]
 - Finite sets: recursion depth is finite
 - Infinite sets: intersections may not be in the model

Tree Share Definition

• A tree share $\tau \in \mathbb{T}$ is a boolean binary tree equipped with the reduction rules R_1 and R_2 (their inverses are E_1, E_2 resp.):

$$\tau \stackrel{\text{def}}{=} \circ | \bullet | \overbrace{\tau \quad \tau}^{\tau} \qquad R_1 : \overbrace{\bullet \quad \bullet}^{\bullet} \mapsto \bullet \qquad R_2 : \overbrace{\circ \quad \circ}^{\circ} \mapsto \circ$$

The tree domain T contains canonical trees which are irreducible with respect to the reduction rules.

Tree Share Definition

• A tree share $\tau \in \mathbb{T}$ is a boolean binary tree equipped with the reduction rules R_1 and R_2 (their inverses are E_1, E_2 resp.):

$$\tau \stackrel{\text{def}}{=} \circ | \bullet | \overbrace{\tau \quad \tau}^{\tau} \qquad R_1 : \overbrace{\bullet \quad \bullet}^{\bullet} \mapsto \bullet \qquad R_2 : \overbrace{\circ \quad \circ}^{\circ} \mapsto \circ$$

The tree domain T contains canonical trees which are irreducible with respect to the reduction rules.

Tree Share Definition

• A tree share $\tau \in \mathbb{T}$ is a boolean binary tree equipped with the reduction rules R_1 and R_2 (their inverses are E_1, E_2 resp.):

$$\tau \stackrel{\text{def}}{=} \circ | \bullet | \overbrace{\tau \quad \tau}^{\tau} \qquad R_1 : \overbrace{\bullet \quad \bullet}^{\bullet} \mapsto \bullet \qquad R_2 : \overbrace{\circ \quad \circ}^{\circ} \mapsto \circ$$

The tree domain T contains canonical trees which are irreducible with respect to the reduction rules.

• \circ is the empty tree, and • the full tree.

Tree Share Definition

• A tree share $\tau \in \mathbb{T}$ is a boolean binary tree equipped with the reduction rules R_1 and R_2 (their inverses are E_1, E_2 resp.):

$$\tau \stackrel{\text{def}}{=} \circ | \bullet | \overbrace{\tau \quad \tau}^{\tau} \qquad R_1 : \overbrace{\bullet \quad \bullet}^{\bullet} \mapsto \bullet \qquad R_2 : \overbrace{\circ \quad \circ}^{\circ} \mapsto \circ$$

The tree domain T contains canonical trees which are irreducible with respect to the reduction rules.

• • is the empty tree, and • the full tree. • $\mathsf{READ}(\tau) \stackrel{\text{def}}{=} \tau \neq \circ \qquad \mathsf{WRITE}(\tau) \stackrel{\text{def}}{=} \tau = \bullet$

5/30

Introduction

Tree Share Operators

■ The complement □:

Introduction

Tree Share Operators

■ The complement □:

<ロ> < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (),

Introduction

Tree Share Operators

■ The complement □:

■ The Boolean function union ⊔ and intersection ¬ operator:

Introduction

Tree Share Operators

■ The complement □:

■ The Boolean function union ⊔ and intersection ¬ operator:

Tree Share Operators

■ The complement □:

■ The Boolean function union ⊔ and intersection ¬ operator:

Properties of \Box , \Box and $\overline{\Box}$

$\mathcal{M} = (\sqcup, \sqcap, \overline{\square}, \bullet, \circ)$ forms a Boolean Algebra [Dockins et al. (2009)]:

B1a. $(\tau_1 \sqcap \tau_2) \sqcap \tau_3 = \tau_1 \sqcap (\tau_2 \sqcap \tau_3)$	B1b. $(\tau_1 \sqcup \tau_2) \sqcup \tau_3 = \tau_1 \sqcup (\tau_2 \sqcup \tau_3)$	(associativity)
<i>B</i> 2 <i>a</i> . $\tau_1 \sqcap \tau_2 = \tau_2 \sqcap \tau_1$	<i>B2b.</i> $\tau_1 \sqcup \tau_2 = \tau_2 \sqcup \tau_1$	(commutativity)
<i>B</i> 3 <i>a</i> . $\tau_1 \sqcap (\tau_2 \sqcup \tau_3) = (\tau_1 \sqcap \tau_2) \sqcup (\tau_1 \sqcap \tau_3)$	$B3b. \ \tau_1 \sqcup (\tau_2 \sqcap \tau_3) = (\tau_1 \sqcup \tau_2) \sqcap (\tau_1 \sqcup \tau_3)$	(distributivity)
<i>B</i> 4 <i>a</i> . $\tau_1 \sqcap (\tau_1 \sqcup \tau_2) = \tau_1$	$B4b. \ \tau_1 \sqcup (\tau_1 \sqcap \tau_2) = \tau_1$	(absorption)
B5a. $\tau \sqcap \bullet = \tau$	B5b. $\tau \sqcup \circ = \tau$	(identity)
<i>B</i> 6 <i>a</i> . $\tau \sqcap \overline{\tau} = \circ$	B6b. $\tau \sqcup \overline{\tau} = \bullet$	(complement)

- Introduction

Tree Share Operators(cont.)

The partial join function \oplus :

Tree Share Operators(cont.)

The partial join function \oplus :

$$\tau_1 \oplus \tau_2 = \tau_3 \quad \stackrel{\text{def}}{=} \quad \tau_1 \sqcup \tau_2 = \tau_3 \land \tau_1 \sqcap \tau_2 = c$$

イロン イヨン イヨン イヨン 三日

8/30

Tree Share Operators(cont.)

The partial join function \oplus :

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Properties of \oplus

$\mathcal{O} = (\mathbb{T}, \oplus)$ for fractional permission in Separation Logic [Dockins et al. (2009)]:

Tree Share Operators(cont.)

The injection bowtie function \bowtie replaces • with tree:

Tree Share Operators(cont.)

The injection bowtie function \bowtie replaces • with tree:

Tree Share Operators(cont.)

The injection bowtie function \bowtie replaces • with tree:

Allow resources to be split uniformly:

$$\tau_{1} \cdot \operatorname{tree}(\ell, \tau_{2}) \overset{\text{def}}{=} \operatorname{tree}(\ell, \tau_{2} \bowtie \tau_{1})$$

$$(\tau_{1} \oplus \tau_{2}) \cdot \operatorname{tree}(\ell, \tau) \Leftrightarrow \tau_{1} \cdot \operatorname{tree}(\ell, \tau) \star \tau_{2} \cdot \operatorname{tree}(\ell, \tau)$$

$$\tau_{1} \cdot \operatorname{tree}(\ell, \tau_{2} \bowtie \tau_{3}) \Leftrightarrow (\tau_{3} \bowtie \tau_{1}) \cdot \operatorname{tree}(\ell, \tau_{2})$$

Tree Share Operators(cont.)

The injection bowtie function \bowtie replaces • with tree:

$$\begin{array}{lll} (\tau_1 \oplus \tau_2) \cdot \operatorname{tree}(\ell, \tau) & \Leftrightarrow & \tau_1 \cdot \operatorname{tree}(\ell, \tau) \star \tau_2 \cdot \operatorname{tree}(\ell, \tau) \\ \tau_1 \cdot \operatorname{tree}(\ell, \tau_2 \bowtie \tau_3) & \Leftrightarrow & (\tau_3 \bowtie \tau_1) \cdot \operatorname{tree}(\ell, \tau_2) \end{array}$$

⋈ can be hard to think about. Is this equation satisfiable?

Properties of ⋈

 $S = (\bowtie, \bullet)$ forms an Monoid with additional properties [Dockins et al. (2009)]:

 $\begin{array}{ll} & M1. \ (\tau_1 \bowtie \tau_2) \bowtie \tau_3 = \tau_1 \bowtie (\tau_2 \bowtie \tau_3) & (\mbox{associativity}) \\ & M2. \ \tau \bowtie \bullet = \bullet \bowtie \tau = \tau & (\mbox{identity}) \\ & M3. \ \tau \bowtie \circ = \circ \bowtie \tau = \circ & (\mbox{collapse point}) \\ & M4. \ \tau_1 \bowtie (\tau_2 \circ \tau_3) = (\tau_1 \circ \tau_2) \bowtie (\tau_1 \circ \tau_3), \ \circ \in \{\sqcap, \sqcup, \oplus\} & (\mbox{distributivity}) \\ & M5. \ \tau \bowtie \tau_1 = \tau \bowtie \tau_2 \Rightarrow \tau \neq \circ \Rightarrow \tau_1 = \tau_2 & (\mbox{left cancellati}) \\ & M6. \ \tau_1 \bowtie \tau = \tau_2 \bowtie \tau \Rightarrow \tau \neq \circ \Rightarrow \tau_1 = \tau_2 & (\mbox{right cancellati}) \\ \end{array}$

(distributivity)
(left cancellation)
(right cancellation)

Introduction

・ロ ・ ・ 一部 ・ ・ 注 ト ・ 注 ・ う Q (* 12 / 30)

Decidability and Complexity results

Outline

1 Introduction

2 Decidability and Complexity results

- Model for Countable Atomless Boolean Algebra
- From ⋈ to string concatenation
- Tree Automatic Structures

3 Conclusion

Decidability and Complexity results

└─Model for Countable Atomless Boolean Algebra

Tree Shares as Countable Atomless Boolean Algebra

■ M = (□, □, □, •, •) is Countable Boolean Algebra because the domain T is countable.

Decidability and Complexity results

└─Model for Countable Atomless Boolean Algebra

Tree Shares as Countable Atomless Boolean Algebra

- M = (□, □, □, •, •) is Countable Boolean Algebra because the domain T is countable.
- Atomless properties of \mathcal{M} :
 - Let $\tau_1 \neq \tau_2$, we denote $\tau_1 \sqsubset \tau_2$ iff $\tau_1 \sqcup \tau_2 = \tau_2$.

- Decidability and Complexity results
 - └─Model for Countable Atomless Boolean Algebra

Tree Shares as Countable Atomless Boolean Algebra

- M = (□, □, □, •, •) is Countable Boolean Algebra because the domain T is countable.
- Atomless properties of \mathcal{M} :
 - Let $\tau_1 \neq \tau_2$, we denote $\tau_1 \sqsubset \tau_2$ iff $\tau_1 \sqcup \tau_2 = \tau_2$.
 - \mathcal{M} is atomless if for $\tau_1 \sqsubset \tau_3$, there exists τ_2 such that $\tau_1 \sqsubset \tau_2 \sqsubset \tau_3$.

Decidability and Complexity results

└─Model for Countable Atomless Boolean Algebra

Tree Shares as Countable Atomless Boolean Algebra

- M = (□, □, □, •, •) is Countable Boolean Algebra because the domain T is countable.
- Atomless properties of \mathcal{M} :
 - Let $\tau_1 \neq \tau_2$, we denote $\tau_1 \sqsubset \tau_2$ iff $\tau_1 \sqcup \tau_2 = \tau_2$.
 - \mathcal{M} is atomless if for $\tau_1 \sqsubset \tau_3$, there exists τ_2 such that $\tau_1 \sqsubseteq \tau_2 \sqsubset \tau_3$.

to the shape of τ_1 :

Decidability and Complexity results

└─Model for Countable Atomless Boolean Algebra

Tree Shares as Countable Atomless Boolean Algebra

- M = (u, ⊓, □, •, •) is Countable Boolean Algebra because the domain T is countable.
- Atomless properties of \mathcal{M} :
 - Let $\tau_1 \neq \tau_2$, we denote $\tau_1 \sqsubset \tau_2$ iff $\tau_1 \sqcup \tau_2 = \tau_2$.
 - \mathcal{M} is atomless if for $\tau_1 \sqsubset \tau_3$, there exists τ_2 such that $\tau_1 \sqsubset \tau_2 \sqsubset \tau_3$.
 - Let $\tau_1 =$ o and $\tau_3 =$ then $\tau_1 \sqsubset \tau_3$. We extend τ_3

to the shape of τ_1 :

then replace one of the \bullet leaves of τ_3 that is not in τ_1 with

Decidability and Complexity results

└─Model for Countable Atomless Boolean Algebra

Decidability of \mathcal{M}

The first-order theory of \mathcal{M} is decidable. The lower bound for its complexity is $\bigcup_{c<\omega} STA(*, 2^{cn}, n)$ [Kozen (1980)].

- Decidability and Complexity results
 - ⊢From ⋈ to string concatenation

Decidability of ⋈

Decidability of $S = (\mathbb{T}, \bowtie)$

Let $\mathcal{S} = (\mathbb{T}, \bowtie)$ then:

- The existential theory of S is decidable in PSPACE.
- The existential theory of S is NP-hard.
- The general first-order theory over S is undecidable.
- Decidability and Complexity results
 - └─ From ⋈ to string concatenation

Decidability of ⋈

Decidability of $S = (\mathbb{T}, \bowtie)$

Let $\mathcal{S} = (\mathbb{T}, \bowtie)$ then:

- The existential theory of \mathcal{S} is decidable in PSPACE.
- The existential theory of S is NP-hard.
- The general first-order theory over S is undecidable.

Decidability of $S^+ = (\mathbb{T} \setminus \{\circ\}, \bowtie)$

Let $\mathcal{S}^+ = (\mathbb{T} \setminus \{\circ\}, \bowtie)$ then:

- The existential theory of S^+ is decidable in PSPACE.
- The existential theory of S^+ is NP-hard.
- The general first-order theory over \mathcal{S}^+ is undecidable.

イロン 人間 とくほ とくほ とうほ

Decidability and Complexity results

⊢From ⋈ to string concatenation

Isomorphism between \bowtie and \cdot

To prove these results on $S^+ = (\mathbb{T} \setminus \{\circ\}, \bowtie)$, we will construct an isomorphism between S^+ equations and word equations.

Decidability and Complexity results

From M to string concatenation

Isomorphism between \bowtie and \cdot

To prove these results on $S^+ = (\mathbb{T} \setminus \{\circ\}, \bowtie)$, we will construct an isomorphism between S^+ equations and word equations.

In particular, we will transform \bowtie into string concatenation. The trick is that we must find an "alphabet" for S^+ equations.

Decidability and Complexity results

From ⋈ to string concatenation

Review of Word Equations

Let A = {a, b,...} be the finite set of alphabet and
 V = {v₁, v₂, ...} the set of variables.

- Decidability and Complexity results
 - From ⋈ to string concatenation

Review of Word Equations

- Let A = {a, b,...} be the finite set of alphabet and
 V = {v₁, v₂, ...} the set of variables.
- A word w is a string in (A ∪ V)*. A word equation E is a pair of words w₁ = w₂.

Decidability and Complexity results

From M to string concatenation

Review of Word Equations

- Let A = {a, b,...} be the finite set of alphabet and
 𝒱 = {v₁, v₂, ...} the set of variables.
- A word w is a string in (A ∪ V)*. A word equation E is a pair of words w₁ = w₂.
- *E* has a solution if there exists a homomorphism $f : \mathcal{A} \cup \mathcal{V} \mapsto \mathcal{A}^*$ that maps each letter in \mathcal{A} to itself.

Decidability and Complexity results

From M to string concatenation

Review of Word Equations

- Let A = {a, b,...} be the finite set of alphabet and
 𝒱 = {v₁, v₂, ...} the set of variables.
- A word w is a string in (A ∪ V)*. A word equation E is a pair of words w₁ = w₂.
- *E* has a solution if there exists a homomorphism $f : \mathcal{A} \cup \mathcal{V} \mapsto \mathcal{A}^*$ that maps each letter in \mathcal{A} to itself.
- For example, the equation $v_1v_2ab = bav_2v_1$ has a solution:

$$f(v_1) = b, f(v_2) = a$$

Decidability and Complexity results

From M to string concatenation

Review of Word Equations

- Let A = {a, b,...} be the finite set of alphabet and
 𝒱 = {v₁, v₂, ...} the set of variables.
- A word w is a string in (A ∪ V)*. A word equation E is a pair of words w₁ = w₂.
- *E* has a solution if there exists a homomorphism $f : \mathcal{A} \cup \mathcal{V} \mapsto \mathcal{A}^*$ that maps each letter in \mathcal{A} to itself.
- For example, the equation $v_1v_2ab = bav_2v_1$ has a solution:

$$f(v_1) = b, f(v_2) = a$$

The satisfiability problem of word equation: checking whether a word equation E has a solution.

Decidability and Complexity results

⊢From ⋈ to string concatenation

Word Equation Results

Decidability and Complexity of Word Equation

 The satisfiability problem of word equation is decidable. The lower bound is NP-complete while the upper bound is PSPACE [Plandowski (1999)].

Decidability and Complexity results

From M to string concatenation

Word Equation Results

Decidability and Complexity of Word Equation

- The satisfiability problem of word equation is decidable. The lower bound is NP-complete while the upper bound is PSPACE [Plandowski (1999)].
- The satisfiability of a system of word equations with regular constraints v_i ∈ REG_i can be reduced to the satisfiability of a single word equation [Schulz (1990)].

Decidability and Complexity results

└─ From ⋈ to string concatenation

Word Equation Results

Decidability and Complexity of Word Equation

- The satisfiability problem of word equation is decidable. The lower bound is NP-complete while the upper bound is PSPACE [Plandowski (1999)].
- The satisfiability of a system of word equations with regular constraints v_i ∈ REG_i can be reduced to the satisfiability of a single word equation [Schulz (1990)].
- The existential theory of string concatenation is decidable with lower bound NP-complete and upper bound PSPACE. The first-order theory of string concatenation is undecidable (forklore).

Decidability and Complexity results

⊢From ⋈ to string concatenation

Tree factorization

Prime trees

A tree $\tau \in \mathbb{T} \setminus \{\bullet, \circ\}$ is prime iff $\tau = \tau_1 \bowtie \tau_2$ then either $\tau_1 = \bullet$ or $\tau_2 = \bullet$.

Decidability and Complexity results

⊢From ⋈ to string concatenation

Tree factorization

Prime trees

A tree $\tau \in \mathbb{T} \setminus \{\bullet, \circ\}$ is prime iff $\tau = \tau_1 \bowtie \tau_2$ then either $\tau_1 = \bullet$ or $\tau_2 = \bullet$.

Decidability and Complexity results

⊢From ⋈ to string concatenation

Tree factorization

Prime trees

A tree $\tau \in \mathbb{T} \setminus \{\bullet, \circ\}$ is prime iff $\tau = \tau_1 \bowtie \tau_2$ then either $\tau_1 = \bullet$ or $\tau_2 = \bullet$.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへの

Decidability and Complexity results

From ⋈ to string concatenation

Tree factorization

Prime trees

A tree $\tau \in \mathbb{T} \setminus \{\bullet, \circ\}$ is prime iff $\tau = \tau_1 \bowtie \tau_2$ then either $\tau_1 = \bullet$ or $\tau_2 = \bullet$.

Decidability and Complexity results

⊢From ⋈ to string concatenation

Tree factorization

Prime trees

A tree $\tau \in \mathbb{T} \setminus \{\bullet, \circ\}$ is prime iff $\tau = \tau_1 \bowtie \tau_2$ then either $\tau_1 = \bullet$ or $\tau_2 = \bullet$.

Decidability and Complexity results

From M to string concatenation

Tree factorization(cont.)

Unique factorization

Let $\tau \in \mathbb{T} \setminus \{\circ, \bullet\}$ then there exists a unique sequence of prime trees τ_1, \ldots, τ_n such that:

 $\tau = \tau_1 \boxtimes \ldots \boxtimes \tau_n$

Furthermore, the factorization problem is in PTIME.

Proof sketch: By induction on the structure of the tree.

Decidability and Complexity results

From M to string concatenation

Infinite alphabet

• Let $\mathbb{T}_p \subset \mathbb{T}$ be the set of prime trees then \mathbb{T}_p is countably infinite.

Decidability and Complexity results

From 🛛 to string concatenation

Infinite alphabet

- Let $\mathbb{T}_p \subset \mathbb{T}$ be the set of prime trees then \mathbb{T}_p is countably infinite.
- T_p is our *alphabet* for the word equation but we need to reduce it to finite alphabet.

Decidability and Complexity results

⊢From ⋈ to string concatenation

Infinite alphabet(cont.)

From infinity to finite

Let Σ be the set of word equations and inequations over infinite alphabet \mathcal{A} then Σ has a solution iff it has a solution over some finite alphabet $\mathcal{B} \subset \mathcal{A}$ such that:

- 1 $\mathcal{A}(\Sigma) \subset \mathcal{B}$
- 2 $|\mathcal{B}| = |\mathcal{A}(\Sigma)| + n$ where *n* is the number of inequations in Σ . The choice of the extra letters in \mathcal{B} is not important.

- Decidability and Complexity results
 - ⊢From ⋈ to string concatenation

Example

- Decidability and Complexity results
 - ⊢From ⋈ to string concatenation

Example

・ロ ・ <
一 ・ <
通 ・ <
言 ・ <
言 ・ う へ ()
24 / 30

- Decidability and Complexity results
 - ⊢From ⋈ to string concatenation

Example

- Decidability and Complexity results
 - ⊢From ⋈ to string concatenation

Example

・ロ ・ <
一 ・ <
通 ・ <
言 ・ <
言 ・ う へ ()
24 / 30

- Decidability and Complexity results
 - ⊢From ⋈ to string concatenation

Example

・ロ ・ ・ 一部 ・ ・ 目 ・ ・ 目 ・ の へ (* 24 / 30

Decidability and Complexity results

⊢From ⋈ to string concatenation

Find a decidable fragment for \bowtie

Since the first-order theory of $S = (\mathbb{T}, \bowtie)$ is undecidable, we want to find a decidable fragment of \bowtie together with $(\sqcup, \sqcap, \overline{\Box})$.

Decidability and Complexity results

└─ Tree Automatic Structures

Connection to Tree Automatic Structures

 \blacksquare Let \bowtie_{τ} be the unary function over trees such that

$$\bowtie_{\tau}(\tau') = \tau' \bowtie \tau$$

Decidability and Complexity results

Tree Automatic Structures

Connection to Tree Automatic Structures

• Let \bowtie_{τ} be the unary function over trees such that

$$\bowtie_{\tau}(\tau') = \tau' \bowtie \tau$$

Decidability and Complexity results

└─ Tree Automatic Structures

Connection to Tree Automatic Structures

• Let \bowtie_{τ} be the unary function over trees such that

$$\rtimes_{\tau}(\tau') = \tau' \bowtie \tau$$

Tree automatic structure

Let $\mathcal{T} = (\mathbb{T}, \sqcup, \sqcap, \square, \boxtimes_{\tau})$ then \mathcal{T} is tree automatic, *i.e.*, its domain and relations are recognized by tree automata. Consequently, the first-order theory of \mathcal{T} is decidable [Blumensath (1999); Blumensath and Gradel (2004)].

Outline

1 Introduction

2 Decidability and Complexity results

- Model for Countable Atomless Boolean Algebra
- From ⋈ to string concatenation
- Tree Automatic Structures

3 Conclusion

- We show that *M* = (⊔, ⊓, □, •, •) forms a Countably Atomless Boolean Algebra.
- We reduce ⋈ to string concatenation.
- We show $\mathcal{T} = (\mathbb{T}, \sqcup, \sqcap, \overline{\Box}, \bowtie_{\tau})$ is tree-automatic.

Future Work

- Complexity of $(\mathbb{T}, \sqcap, \sqcup)$ (\exists -theory and first-order theory).
- Decidability of $(\mathbb{T}, \sqcap, \sqcup, \bowtie)$ (\exists -theory).
- Complexity of *T* = (𝔅, ⊔, ⊓, ⊡, ⋈_τ) (∃-theory and first-order theory).
- Extension of word equation to tree equation.

Thank you! ©

・ロト ・ 同ト ・ ヨト ・ ヨト ・ りゅう

Proof sketch:

• Let f be a solution of Σ . For each inequation $w_1 \neq w_2$ to hold, it suffices to have a single position where they differs.

Proof sketch:

- Let f be a solution of Σ . For each inequation $w_1 \neq w_2$ to hold, it suffices to have a single position where they differs.
- Therefore, there is at most one letter a_i ∉ A(Σ) in each inequation that we need to preserve.

Proof sketch:

- Let f be a solution of Σ . For each inequation $w_1 \neq w_2$ to hold, it suffices to have a single position where they differs.
- Therefore, there is at most one letter $a_i \notin \mathcal{A}(\Sigma)$ in each inequation that we need to preserve.
- For other letters b_i ∉ A(Σ), we simply replace them with a letter in A(Σ).

Proof sketch:

- Let f be a solution of Σ . For each inequation $w_1 \neq w_2$ to hold, it suffices to have a single position where they differs.
- Therefore, there is at most one letter $a_i \notin \mathcal{A}(\Sigma)$ in each inequation that we need to preserve.
- For other letters $b_i \notin \mathcal{A}(\Sigma)$, we simply replace them with a letter in $\mathcal{A}(\Sigma)$.
- As a result, the new solution satisfies the alphabet constraint.
References

- A. Blumensath. *Automatic Structures.* PhD thesis, RWTH Aachen, 1999.
- A. Blumensath and E. Gradel. Finite presentations of infinite structures: automata and interpretations. In *Theory of Computer Systems*, pages 641–674, 2004.
- John Boyland. Checking interference with fractional permissions. In Static Analysis, 10th International Symposium, SAS 2003, San Diego, CA, USA, June 11-13, 2003, Proceedings, pages 55–72, 2003. doi: 10.1007/3-540-44898-5_4. URL http://dx.doi.org/10.1007/3-540-44898-5_4.
- Robert Dockins, Aquinas Hobor, and Andrew W. Appel. A fresh look at separation algebras and share accounting. In *Programming Languages and Systems, 7th Asian Symposium, APLAS 2009, Seoul, Korea, December 14-16, 2009. Proceedings,* pages 161–177, 2009. doi: 10.1007/978-3-642-10672-9_13. URL http://dx.doi.org/10.1007/978-3-642-10672-9_13.

- Conclusion

- Dexter Kozen. Complexity of boolean algebras. In *Theoretical Computer Science 10*, pages 221–247, 1980.
- Matthew Parkinson. *Local Reasoning for Java*. PhD thesis, University of Cambridge, 2005.
- Wojciech Plandowski. Satisfiability of word equations with constants is in PSPACE. In 40th Annual Symposium on Foundations of Computer Science, FOCS '99, 17-18 October, 1999, New York, NY, USA, pages 495–500, 1999. doi: 10.1109/SFFCS.1999.814622. URL http://dx.doi.org/10.1109/SFFCS.1999.814622.
- Klaus U. Schulz. Makanin's algorithm for word equations two improvements and a generalization. In Word Equations and Related Topics, First International Workshop, IWWERT '90, Tübingen, Germany, October 1-3, 1990, Proceedings, pages 85–150, 1990. doi: 10.1007/3-540-55124-7_4. URL http://dx.doi.org/10.1007/3-540-55124-7_4.