
Decidability and Complexity of Tree Share Formulas

Decidability and Complexity of Tree Share
Formulas

Xuan Bach Le1 Aquinas Hobor1 Anthony W. Lin2

1 National University of Singapore 2 University of Oxford

December 14, 2016

1 / 30

Decidability and Complexity of Tree Share Formulas

Introduction

tree(x , τ) ∧WRITE(τ)

tree(x , τ1) ∧ READ(τ1) tree(x , τ2) ∧ READ(τ2)

tree(x , τ) ∧WRITE(τ)

∥

2 / 30

Decidability and Complexity of Tree Share Formulas

Introduction

Shares

Shares are embedded into separation logic to reason about
resource accounting:

addr
τ1⊕τ2↦ val ⇔ addr

τ1↦ val ⋆ addr
τ2↦ val

Allow resources to be split and shared in large scale:

tree(`, τ)
def= (` = null ∧ emp) ∨ ∃`l , `r . (`

τ↦ (`l , `r) ⋆ tree(`l , τ) ⋆ tree(`r , τ))

tree(`, τ1 ⊕ τ2) ⇔ tree(`, τ1) ⋆ tree(`, τ2)

Share policies to reason about permissions for single writer
and multiple readers:

WRITE(τ)
READ(τ)

Write-
Read

READ(τ)
∃τ1, τ2. τ1 ⊕ τ2 = τ ∧

READ(τ1) ∧ READ(τ2)

Split-
Read

3 / 30

Decidability and Complexity of Tree Share Formulas

Introduction

Shares

Shares are embedded into separation logic to reason about
resource accounting:

addr
τ1⊕τ2↦ val ⇔ addr

τ1↦ val ⋆ addr
τ2↦ val

Allow resources to be split and shared in large scale:

tree(`, τ)
def= (` = null ∧ emp) ∨ ∃`l , `r . (`

τ↦ (`l , `r) ⋆ tree(`l , τ) ⋆ tree(`r , τ))

tree(`, τ1 ⊕ τ2) ⇔ tree(`, τ1) ⋆ tree(`, τ2)

Share policies to reason about permissions for single writer
and multiple readers:

WRITE(τ)
READ(τ)

Write-
Read

READ(τ)
∃τ1, τ2. τ1 ⊕ τ2 = τ ∧

READ(τ1) ∧ READ(τ2)

Split-
Read

3 / 30

Decidability and Complexity of Tree Share Formulas

Introduction

Shares

Shares are embedded into separation logic to reason about
resource accounting:

addr
τ1⊕τ2↦ val ⇔ addr

τ1↦ val ⋆ addr
τ2↦ val

Allow resources to be split and shared in large scale:

tree(`, τ)
def= (` = null ∧ emp) ∨ ∃`l , `r . (`

τ↦ (`l , `r) ⋆ tree(`l , τ) ⋆ tree(`r , τ))

tree(`, τ1 ⊕ τ2) ⇔ tree(`, τ1) ⋆ tree(`, τ2)

Share policies to reason about permissions for single writer
and multiple readers:

WRITE(τ)
READ(τ)

Write-
Read

READ(τ)
∃τ1, τ2. τ1 ⊕ τ2 = τ ∧

READ(τ1) ∧ READ(τ2)

Split-
Read

3 / 30

Decidability and Complexity of Tree Share Formulas

Introduction

Shares

Shares enable resource reasoning in concurrent programming

Rational numbers [Boyland (2003)]: disjointness problem
makes tree split equivalence false:
¬(tree(`, τ1 ⊕ τ2)⇐ tree(`, τ1) ⋆ tree(`, τ2))
Subsets of natural numbers [Parkinson (2005)]

Finite sets: recursion depth is finite
Infinite sets: intersections may not be in the model

4 / 30

Decidability and Complexity of Tree Share Formulas

Introduction

Shares

Shares enable resource reasoning in concurrent programming

Rational numbers [Boyland (2003)]: disjointness problem
makes tree split equivalence false:
¬(tree(`, τ1 ⊕ τ2)⇐ tree(`, τ1) ⋆ tree(`, τ2))

Subsets of natural numbers [Parkinson (2005)]

Finite sets: recursion depth is finite
Infinite sets: intersections may not be in the model

4 / 30

Decidability and Complexity of Tree Share Formulas

Introduction

Shares

Shares enable resource reasoning in concurrent programming

Rational numbers [Boyland (2003)]: disjointness problem
makes tree split equivalence false:
¬(tree(`, τ1 ⊕ τ2)⇐ tree(`, τ1) ⋆ tree(`, τ2))
Subsets of natural numbers [Parkinson (2005)]

Finite sets: recursion depth is finite
Infinite sets: intersections may not be in the model

4 / 30

Decidability and Complexity of Tree Share Formulas

Introduction

Tree Share Definition

A tree share τ ∈ T is a boolean binary tree equipped with the
reduction rules R1 and R2 (their inverses are E1,E2 resp.):

τ
def= ○ ∣ ● ∣ τ τ R1 ∶ ● ●↦ ● R2 ∶ ○ ○↦ ○

The tree domain T contains canonical trees which are
irreducible with respect to the reduction rules.

● ● ○ ○ ○

Ri↦ ● ○ ○
Ri↦ ● ○

○ is the empty tree, and ● the full tree.

READ(τ) def= τ ≠ ○ WRITE(τ) def= τ = ●

5 / 30

Decidability and Complexity of Tree Share Formulas

Introduction

Tree Share Definition

A tree share τ ∈ T is a boolean binary tree equipped with the
reduction rules R1 and R2 (their inverses are E1,E2 resp.):

τ
def= ○ ∣ ● ∣ τ τ R1 ∶ ● ●↦ ● R2 ∶ ○ ○↦ ○

The tree domain T contains canonical trees which are
irreducible with respect to the reduction rules.

● ● ○ ○ ○

Ri↦ ● ○ ○
Ri↦ ● ○

○ is the empty tree, and ● the full tree.

READ(τ) def= τ ≠ ○ WRITE(τ) def= τ = ●

5 / 30

Decidability and Complexity of Tree Share Formulas

Introduction

Tree Share Definition

A tree share τ ∈ T is a boolean binary tree equipped with the
reduction rules R1 and R2 (their inverses are E1,E2 resp.):

τ
def= ○ ∣ ● ∣ τ τ R1 ∶ ● ●↦ ● R2 ∶ ○ ○↦ ○

The tree domain T contains canonical trees which are
irreducible with respect to the reduction rules.

● ● ○ ○ ○

Ri↦ ● ○ ○
Ri↦ ● ○

○ is the empty tree, and ● the full tree.

READ(τ) def= τ ≠ ○ WRITE(τ) def= τ = ●

5 / 30

Decidability and Complexity of Tree Share Formulas

Introduction

Tree Share Definition

A tree share τ ∈ T is a boolean binary tree equipped with the
reduction rules R1 and R2 (their inverses are E1,E2 resp.):

τ
def= ○ ∣ ● ∣ τ τ R1 ∶ ● ●↦ ● R2 ∶ ○ ○↦ ○

The tree domain T contains canonical trees which are
irreducible with respect to the reduction rules.

● ● ○ ○ ○

Ri↦ ● ○ ○
Ri↦ ● ○

○ is the empty tree, and ● the full tree.

READ(τ) def= τ ≠ ○ WRITE(τ) def= τ = ●
5 / 30

Decidability and Complexity of Tree Share Formulas

Introduction

Tree Share Operators

The complement 2:

●1 ○2 ○3
¬↦
○1 ●2 ●3

The Boolean function union ⊔ and intersection ⊓ operator:

● ○ ●
⊔
○ ● ○

Ei↦
●1 ●2 ○3 ●4

⊔
○1 ●2 ○3 ○4

∨↦
●1 ●2 ○3 ●4

Ri↦ ● ○ ●

● ○ ●
⊓
○ ● ○

Ei↦
●1 ●2 ○3 ●4

⊓
○1 ●2 ○3 ○4

∧↦
○1 ●2 ○3 ○4

Ri↦
○ ● ○

6 / 30

Decidability and Complexity of Tree Share Formulas

Introduction

Tree Share Operators

The complement 2:

●1 ○2 ○3
¬↦
○1 ●2 ●3

The Boolean function union ⊔ and intersection ⊓ operator:

● ○ ●
⊔
○ ● ○

Ei↦
●1 ●2 ○3 ●4

⊔
○1 ●2 ○3 ○4

∨↦
●1 ●2 ○3 ●4

Ri↦ ● ○ ●

● ○ ●
⊓
○ ● ○

Ei↦
●1 ●2 ○3 ●4

⊓
○1 ●2 ○3 ○4

∧↦
○1 ●2 ○3 ○4

Ri↦
○ ● ○

6 / 30

Decidability and Complexity of Tree Share Formulas

Introduction

Tree Share Operators

The complement 2:

●1 ○2 ○3
¬↦
○1 ●2 ●3

The Boolean function union ⊔ and intersection ⊓ operator:

● ○ ●
⊔
○ ● ○

Ei↦
●1 ●2 ○3 ●4

⊔
○1 ●2 ○3 ○4

∨↦
●1 ●2 ○3 ●4

Ri↦ ● ○ ●

● ○ ●
⊓
○ ● ○

Ei↦
●1 ●2 ○3 ●4

⊓
○1 ●2 ○3 ○4

∧↦
○1 ●2 ○3 ○4

Ri↦
○ ● ○

6 / 30

Decidability and Complexity of Tree Share Formulas

Introduction

Tree Share Operators

The complement 2:

●1 ○2 ○3
¬↦
○1 ●2 ●3

The Boolean function union ⊔ and intersection ⊓ operator:

● ○ ●
⊔
○ ● ○

Ei↦
●1 ●2 ○3 ●4

⊔
○1 ●2 ○3 ○4

∨↦
●1 ●2 ○3 ●4

Ri↦ ● ○ ●

● ○ ●
⊓
○ ● ○

Ei↦
●1 ●2 ○3 ●4

⊓
○1 ●2 ○3 ○4

∧↦
○1 ●2 ○3 ○4

Ri↦
○ ● ○

6 / 30

Decidability and Complexity of Tree Share Formulas

Introduction

Tree Share Operators

The complement 2:

●1 ○2 ○3
¬↦
○1 ●2 ●3

The Boolean function union ⊔ and intersection ⊓ operator:

● ○ ●
⊔
○ ● ○

Ei↦
●1 ●2 ○3 ●4

⊔
○1 ●2 ○3 ○4

∨↦
●1 ●2 ○3 ●4

Ri↦ ● ○ ●

● ○ ●
⊓
○ ● ○

Ei↦
●1 ●2 ○3 ●4

⊓
○1 ●2 ○3 ○4

∧↦
○1 ●2 ○3 ○4

Ri↦
○ ● ○

6 / 30

Decidability and Complexity of Tree Share Formulas

Introduction

Properties of ⊔, ⊓ and 2

M = (⊔,⊓,2, ●, ○) forms a Boolean Algebra [Dockins et al.
(2009)]:

B1a. (τ1 ⊓ τ2) ⊓ τ3 = τ1 ⊓ (τ2 ⊓ τ3) B1b. (τ1 ⊔ τ2) ⊔ τ3 = τ1 ⊔ (τ2 ⊔ τ3) (associativity)
B2a. τ1 ⊓ τ2 = τ2 ⊓ τ1 B2b. τ1 ⊔ τ2 = τ2 ⊔ τ1 (commutativity)
B3a. τ1 ⊓ (τ2 ⊔ τ3) = (τ1 ⊓ τ2) ⊔ (τ1 ⊓ τ3) B3b. τ1 ⊔ (τ2 ⊓ τ3) = (τ1 ⊔ τ2) ⊓ (τ1 ⊔ τ3) (distributivity)
B4a. τ1 ⊓ (τ1 ⊔ τ2) = τ1 B4b. τ1 ⊔ (τ1 ⊓ τ2) = τ1 (absorption)
B5a. τ ⊓ ● = τ B5b. τ ⊔ ○ = τ (identity)
B6a. τ ⊓ τ = ○ B6b. τ ⊔ τ = ● (complement)

7 / 30

Decidability and Complexity of Tree Share Formulas

Introduction

Tree Share Operators(cont.)

The partial join function ⊕:

τ1 ⊕ τ2 = τ3 def= τ1 ⊔ τ2 = τ3 ∧ τ1 ⊓ τ2 = ○

● ○ ○ ●
⊕ ○ ● ○

Ei↦
●1 ○2 ○3 ●4

⊕
○1 ○2 ●3 ○4

⊕↦
●1 ○2 ●3 ●4

Ri↦
● ○ ●

8 / 30

Decidability and Complexity of Tree Share Formulas

Introduction

Tree Share Operators(cont.)

The partial join function ⊕:

τ1 ⊕ τ2 = τ3 def= τ1 ⊔ τ2 = τ3 ∧ τ1 ⊓ τ2 = ○

● ○ ○ ●
⊕ ○ ● ○

Ei↦
●1 ○2 ○3 ●4

⊕
○1 ○2 ●3 ○4

⊕↦
●1 ○2 ●3 ●4

Ri↦
● ○ ●

8 / 30

Decidability and Complexity of Tree Share Formulas

Introduction

Tree Share Operators(cont.)

The partial join function ⊕:

τ1 ⊕ τ2 = τ3 def= τ1 ⊔ τ2 = τ3 ∧ τ1 ⊓ τ2 = ○

● ○ ○ ●
⊕ ○ ● ○

Ei↦
●1 ○2 ○3 ●4

⊕
○1 ○2 ●3 ○4

⊕↦
●1 ○2 ●3 ●4

Ri↦
● ○ ●

8 / 30

Decidability and Complexity of Tree Share Formulas

Introduction

Properties of ⊕

O = (T,⊕) for fractional permission in Separation Logic [Dockins
et al. (2009)]:

J1. τ1 ⊕ τ2 = τ3 ⇒ τ1 ⊕ τ2 = τ ′3 ⇒ τ3 = τ ′3 (functionality)
J2. τ1 ⊕ τ2 = τ2 ⊕ τ1 (commutativity)
J3. τ1 ⊕ (τ2 ⊕ τ3) = (τ1 ⊕ τ2)⊕ τ3 (associativity)
J4. τ1 ⊕ τ2 = τ3 ⇒ τ ′1 ⊕ τ2 = τ3 ⇒ τ1 = τ ′1 (cancellation)
J5. ∃u. ∀τ. τ ⊕ u = τ (unit)
J6. τ1 ⊕ τ1 = τ2 ⇒ τ1 = τ2 (disjointness)

J7. a⊕ b = z ∧ c ⊕ d = z ⇒ ∃ac, ad ,bc,bd .
a b ac

ad bd
bcc

d

ac ⊕ ad = a ∧ bc ⊕ bd = b ∧ ac ⊕ bc = c ∧ ad ⊕ bd = d (cross split)
J8. τ ≠ ○⇒ ∃τ1, τ2. τ1 ≠ ○ ∧ τ2 ≠ ○ ∧ τ1 ⊕ τ2 = τ (infinite split)

9 / 30

Decidability and Complexity of Tree Share Formulas

Introduction

Tree Share Operators(cont.)

The injection bowtie function & replaces ● with tree:

● ○ ○ ●
& ○ ● =

● ○ ○ ●
& ○ ● =

○ ● ○ ○ ○ ●

Allow resources to be split uniformly:

τ1 ⋅ tree(`, τ2) def= tree(`, τ2 & τ1)

(τ1 ⊕ τ2) ⋅ tree(`, τ) ⇔ τ1 ⋅ tree(`, τ) ⋆ τ2 ⋅ tree(`, τ)
τ1 ⋅ tree(`, τ2 & τ3) ⇔ (τ3 & τ1) ⋅ tree(`, τ2)

& can be hard to think about. Is this equation satisfiable?

v1 & v2 &
○ ● ○ = ○ ● ○

& v2 & v1

10 / 30

Decidability and Complexity of Tree Share Formulas

Introduction

Tree Share Operators(cont.)

The injection bowtie function & replaces ● with tree:

● ○ ○ ●
& ○ ● =

● ○ ○ ●
& ○ ● =

○ ● ○ ○ ○ ●

Allow resources to be split uniformly:

τ1 ⋅ tree(`, τ2) def= tree(`, τ2 & τ1)

(τ1 ⊕ τ2) ⋅ tree(`, τ) ⇔ τ1 ⋅ tree(`, τ) ⋆ τ2 ⋅ tree(`, τ)
τ1 ⋅ tree(`, τ2 & τ3) ⇔ (τ3 & τ1) ⋅ tree(`, τ2)

& can be hard to think about. Is this equation satisfiable?

v1 & v2 &
○ ● ○ = ○ ● ○

& v2 & v1

10 / 30

Decidability and Complexity of Tree Share Formulas

Introduction

Tree Share Operators(cont.)

The injection bowtie function & replaces ● with tree:

● ○ ○ ●
& ○ ● =

● ○ ○ ●
& ○ ● =

○ ● ○ ○ ○ ●

Allow resources to be split uniformly:

τ1 ⋅ tree(`, τ2) def= tree(`, τ2 & τ1)

(τ1 ⊕ τ2) ⋅ tree(`, τ) ⇔ τ1 ⋅ tree(`, τ) ⋆ τ2 ⋅ tree(`, τ)
τ1 ⋅ tree(`, τ2 & τ3) ⇔ (τ3 & τ1) ⋅ tree(`, τ2)

& can be hard to think about. Is this equation satisfiable?

v1 & v2 &
○ ● ○ = ○ ● ○

& v2 & v1

10 / 30

Decidability and Complexity of Tree Share Formulas

Introduction

Tree Share Operators(cont.)

The injection bowtie function & replaces ● with tree:

● ○ ○ ●
& ○ ● =

● ○ ○ ●
& ○ ● =

○ ● ○ ○ ○ ●

Allow resources to be split uniformly:

τ1 ⋅ tree(`, τ2) def= tree(`, τ2 & τ1)

(τ1 ⊕ τ2) ⋅ tree(`, τ) ⇔ τ1 ⋅ tree(`, τ) ⋆ τ2 ⋅ tree(`, τ)
τ1 ⋅ tree(`, τ2 & τ3) ⇔ (τ3 & τ1) ⋅ tree(`, τ2)

& can be hard to think about. Is this equation satisfiable?

v1 & v2 &
○ ● ○ = ○ ● ○

& v2 & v1

10 / 30

Decidability and Complexity of Tree Share Formulas

Introduction

Properties of &

S = (&, ●) forms an Monoid with additional properties [Dockins
et al. (2009)]:

M1. (τ1 & τ2) & τ3 = τ1 & (τ2 & τ3) (associativity)
M2. τ & ● = ● & τ = τ (identity)
M3. τ & ○ = ○ & τ = ○ (collapse point)
M4. τ1 & (τ2 ◇ τ3) = (τ1 ◇ τ2) & (τ1 ◇ τ3), ◇ ∈ {⊓,⊔,⊕} (distributivity)
M5. τ & τ1 = τ & τ2 ⇒ τ ≠ ○⇒ τ1 = τ2 (left cancellation)
M6. τ1 & τ = τ2 & τ ⇒ τ ≠ ○⇒ τ1 = τ2 (right cancellation)

11 / 30

Decidability and Complexity of Tree Share Formulas

Introduction

tree(x , τ)

(● ○ ⊕ ○ ●) ⋅ tree(x , τ)

● ○ ⋅ tree(x , τ) ○ ● ⋅ tree(x , τ)

(● ○ ⊕ ○ ●) ⋅ tree(x , τ)

∥

12 / 30

Decidability and Complexity of Tree Share Formulas

Decidability and Complexity results

Outline

1 Introduction

2 Decidability and Complexity results
Model for Countable Atomless Boolean Algebra
From & to string concatenation
Tree Automatic Structures

3 Conclusion

13 / 30

Decidability and Complexity of Tree Share Formulas

Decidability and Complexity results

Model for Countable Atomless Boolean Algebra

Tree Shares as Countable Atomless Boolean Algebra

M = (⊔,⊓,2, ●, ○) is Countable Boolean Algebra because the
domain T is countable.

Atomless properties of M:
Let τ1 ≠ τ2, we denote τ1 < τ2 iff τ1 ⊔ τ2 = τ2.
M is atomless if for τ1 < τ3, there exists τ2 such that
τ1 < τ2 < τ3.
Let τ1 =

○ ● ○ and τ3 = ● ○ then τ1 < τ3. We extend τ3

to the shape of τ1:

τ3
Ei↦
● ● ○

then replace one of the ● leaves of τ3 that is not in τ1 with

● ○:

● ● ○↦
● ○ ● ○

14 / 30

Decidability and Complexity of Tree Share Formulas

Decidability and Complexity results

Model for Countable Atomless Boolean Algebra

Tree Shares as Countable Atomless Boolean Algebra

M = (⊔,⊓,2, ●, ○) is Countable Boolean Algebra because the
domain T is countable.
Atomless properties of M:

Let τ1 ≠ τ2, we denote τ1 < τ2 iff τ1 ⊔ τ2 = τ2.

M is atomless if for τ1 < τ3, there exists τ2 such that
τ1 < τ2 < τ3.
Let τ1 =

○ ● ○ and τ3 = ● ○ then τ1 < τ3. We extend τ3

to the shape of τ1:

τ3
Ei↦
● ● ○

then replace one of the ● leaves of τ3 that is not in τ1 with

● ○:

● ● ○↦
● ○ ● ○

14 / 30

Decidability and Complexity of Tree Share Formulas

Decidability and Complexity results

Model for Countable Atomless Boolean Algebra

Tree Shares as Countable Atomless Boolean Algebra

M = (⊔,⊓,2, ●, ○) is Countable Boolean Algebra because the
domain T is countable.
Atomless properties of M:

Let τ1 ≠ τ2, we denote τ1 < τ2 iff τ1 ⊔ τ2 = τ2.
M is atomless if for τ1 < τ3, there exists τ2 such that
τ1 < τ2 < τ3.

Let τ1 =
○ ● ○ and τ3 = ● ○ then τ1 < τ3. We extend τ3

to the shape of τ1:

τ3
Ei↦
● ● ○

then replace one of the ● leaves of τ3 that is not in τ1 with

● ○:

● ● ○↦
● ○ ● ○

14 / 30

Decidability and Complexity of Tree Share Formulas

Decidability and Complexity results

Model for Countable Atomless Boolean Algebra

Tree Shares as Countable Atomless Boolean Algebra

M = (⊔,⊓,2, ●, ○) is Countable Boolean Algebra because the
domain T is countable.
Atomless properties of M:

Let τ1 ≠ τ2, we denote τ1 < τ2 iff τ1 ⊔ τ2 = τ2.
M is atomless if for τ1 < τ3, there exists τ2 such that
τ1 < τ2 < τ3.
Let τ1 =

○ ● ○ and τ3 = ● ○ then τ1 < τ3. We extend τ3

to the shape of τ1:

τ3
Ei↦
● ● ○

then replace one of the ● leaves of τ3 that is not in τ1 with

● ○:

● ● ○↦
● ○ ● ○

14 / 30

Decidability and Complexity of Tree Share Formulas

Decidability and Complexity results

Model for Countable Atomless Boolean Algebra

Tree Shares as Countable Atomless Boolean Algebra

M = (⊔,⊓,2, ●, ○) is Countable Boolean Algebra because the
domain T is countable.
Atomless properties of M:

Let τ1 ≠ τ2, we denote τ1 < τ2 iff τ1 ⊔ τ2 = τ2.
M is atomless if for τ1 < τ3, there exists τ2 such that
τ1 < τ2 < τ3.
Let τ1 =

○ ● ○ and τ3 = ● ○ then τ1 < τ3. We extend τ3

to the shape of τ1:

τ3
Ei↦
● ● ○

then replace one of the ● leaves of τ3 that is not in τ1 with

● ○:

● ● ○↦
● ○ ● ○

14 / 30

Decidability and Complexity of Tree Share Formulas

Decidability and Complexity results

Model for Countable Atomless Boolean Algebra

Decidability of M
The first-order theory of M is decidable. The lower bound for its
complexity is ⋃c<ω STA(∗,2cn,n) [Kozen (1980)].

15 / 30

Decidability and Complexity of Tree Share Formulas

Decidability and Complexity results

From & to string concatenation

Decidability of &

Decidability of S = (T,&)
Let S = (T,&) then:

The existential theory of S is decidable in PSPACE.

The existential theory of S is NP-hard.

The general first-order theory over S is undecidable.

Decidability of S+ = (T/{○},&)
Let S+ = (T/{○},&) then:

The existential theory of S+ is decidable in PSPACE.

The existential theory of S+ is NP-hard.

The general first-order theory over S+ is undecidable.

16 / 30

Decidability and Complexity of Tree Share Formulas

Decidability and Complexity results

From & to string concatenation

Decidability of &

Decidability of S = (T,&)
Let S = (T,&) then:

The existential theory of S is decidable in PSPACE.

The existential theory of S is NP-hard.

The general first-order theory over S is undecidable.

Decidability of S+ = (T/{○},&)
Let S+ = (T/{○},&) then:

The existential theory of S+ is decidable in PSPACE.

The existential theory of S+ is NP-hard.

The general first-order theory over S+ is undecidable.

16 / 30

Decidability and Complexity of Tree Share Formulas

Decidability and Complexity results

From & to string concatenation

Isomorphism between & and ⋅

To prove these results on S+ = (T/{○},&), we will construct an
isomorphism between S+ equations and word equations.

In particular, we will transform & into string concatenation. The
trick is that we must find an “alphabet” for S+ equations.

17 / 30

Decidability and Complexity of Tree Share Formulas

Decidability and Complexity results

From & to string concatenation

Isomorphism between & and ⋅

To prove these results on S+ = (T/{○},&), we will construct an
isomorphism between S+ equations and word equations.

In particular, we will transform & into string concatenation. The
trick is that we must find an “alphabet” for S+ equations.

17 / 30

Decidability and Complexity of Tree Share Formulas

Decidability and Complexity results

From & to string concatenation

Review of Word Equations

Let A = {a,b, . . .} be the finite set of alphabet and
V = {v1, v2, . . .} the set of variables.

A word w is a string in (A ∪ V)∗. A word equation E is a pair
of words w1 = w2.

E has a solution if there exists a homomorphism
f ∶ A ∪ V ↦ A∗ that maps each letter in A to itself.

For example, the equation v1v2ab = bav2v1 has a solution:

f (v1) = b, f (v2) = a

The satisfiability problem of word equation: checking whether
a word equation E has a solution.

18 / 30

Decidability and Complexity of Tree Share Formulas

Decidability and Complexity results

From & to string concatenation

Review of Word Equations

Let A = {a,b, . . .} be the finite set of alphabet and
V = {v1, v2, . . .} the set of variables.

A word w is a string in (A ∪ V)∗. A word equation E is a pair
of words w1 = w2.

E has a solution if there exists a homomorphism
f ∶ A ∪ V ↦ A∗ that maps each letter in A to itself.

For example, the equation v1v2ab = bav2v1 has a solution:

f (v1) = b, f (v2) = a

The satisfiability problem of word equation: checking whether
a word equation E has a solution.

18 / 30

Decidability and Complexity of Tree Share Formulas

Decidability and Complexity results

From & to string concatenation

Review of Word Equations

Let A = {a,b, . . .} be the finite set of alphabet and
V = {v1, v2, . . .} the set of variables.

A word w is a string in (A ∪ V)∗. A word equation E is a pair
of words w1 = w2.

E has a solution if there exists a homomorphism
f ∶ A ∪ V ↦ A∗ that maps each letter in A to itself.

For example, the equation v1v2ab = bav2v1 has a solution:

f (v1) = b, f (v2) = a

The satisfiability problem of word equation: checking whether
a word equation E has a solution.

18 / 30

Decidability and Complexity of Tree Share Formulas

Decidability and Complexity results

From & to string concatenation

Review of Word Equations

Let A = {a,b, . . .} be the finite set of alphabet and
V = {v1, v2, . . .} the set of variables.

A word w is a string in (A ∪ V)∗. A word equation E is a pair
of words w1 = w2.

E has a solution if there exists a homomorphism
f ∶ A ∪ V ↦ A∗ that maps each letter in A to itself.

For example, the equation v1v2ab = bav2v1 has a solution:

f (v1) = b, f (v2) = a

The satisfiability problem of word equation: checking whether
a word equation E has a solution.

18 / 30

Decidability and Complexity of Tree Share Formulas

Decidability and Complexity results

From & to string concatenation

Review of Word Equations

Let A = {a,b, . . .} be the finite set of alphabet and
V = {v1, v2, . . .} the set of variables.

A word w is a string in (A ∪ V)∗. A word equation E is a pair
of words w1 = w2.

E has a solution if there exists a homomorphism
f ∶ A ∪ V ↦ A∗ that maps each letter in A to itself.

For example, the equation v1v2ab = bav2v1 has a solution:

f (v1) = b, f (v2) = a

The satisfiability problem of word equation: checking whether
a word equation E has a solution.

18 / 30

Decidability and Complexity of Tree Share Formulas

Decidability and Complexity results

From & to string concatenation

Word Equation Results

Decidability and Complexity of Word Equation

The satisfiability problem of word equation is decidable. The
lower bound is NP-complete while the upper bound is
PSPACE [Plandowski (1999)].

The satisfiability of a system of word equations with regular
constraints vi ∈ REGi can be reduced to the satisfiability of a
single word equation [Schulz (1990)].

The existential theory of string concatenation is decidable
with lower bound NP-complete and upper bound PSPACE.
The first-order theory of string concatenation is undecidable
(forklore).

19 / 30

Decidability and Complexity of Tree Share Formulas

Decidability and Complexity results

From & to string concatenation

Word Equation Results

Decidability and Complexity of Word Equation

The satisfiability problem of word equation is decidable. The
lower bound is NP-complete while the upper bound is
PSPACE [Plandowski (1999)].

The satisfiability of a system of word equations with regular
constraints vi ∈ REGi can be reduced to the satisfiability of a
single word equation [Schulz (1990)].

The existential theory of string concatenation is decidable
with lower bound NP-complete and upper bound PSPACE.
The first-order theory of string concatenation is undecidable
(forklore).

19 / 30

Decidability and Complexity of Tree Share Formulas

Decidability and Complexity results

From & to string concatenation

Word Equation Results

Decidability and Complexity of Word Equation

The satisfiability problem of word equation is decidable. The
lower bound is NP-complete while the upper bound is
PSPACE [Plandowski (1999)].

The satisfiability of a system of word equations with regular
constraints vi ∈ REGi can be reduced to the satisfiability of a
single word equation [Schulz (1990)].

The existential theory of string concatenation is decidable
with lower bound NP-complete and upper bound PSPACE.
The first-order theory of string concatenation is undecidable
(forklore).

19 / 30

Decidability and Complexity of Tree Share Formulas

Decidability and Complexity results

From & to string concatenation

Tree factorization

Prime trees

A tree τ ∈ T/{●, ○} is prime iff τ = τ1 & τ2 then either τ1 = ● or
τ2 = ●.

A tree share τ can be factorized into prime trees using &:

○
○ ● ○ ● ○

= ○ ● &
○ ● ○ ● ○

= ○ ● & ○ ● ● & ● ○

20 / 30

Decidability and Complexity of Tree Share Formulas

Decidability and Complexity results

From & to string concatenation

Tree factorization

Prime trees

A tree τ ∈ T/{●, ○} is prime iff τ = τ1 & τ2 then either τ1 = ● or
τ2 = ●.

A tree share τ can be factorized into prime trees using &:

○
○ ● ○ ● ○

= ○ ● &
○ ● ○ ● ○

= ○ ● & ○ ● ● & ● ○

20 / 30

Decidability and Complexity of Tree Share Formulas

Decidability and Complexity results

From & to string concatenation

Tree factorization

Prime trees

A tree τ ∈ T/{●, ○} is prime iff τ = τ1 & τ2 then either τ1 = ● or
τ2 = ●.

A tree share τ can be factorized into prime trees using &:

○
○ ● ○ ● ○

= ○ ● &
○ ● ○ ● ○

= ○ ● & ○ ● ● & ● ○

20 / 30

Decidability and Complexity of Tree Share Formulas

Decidability and Complexity results

From & to string concatenation

Tree factorization

Prime trees

A tree τ ∈ T/{●, ○} is prime iff τ = τ1 & τ2 then either τ1 = ● or
τ2 = ●.

A tree share τ can be factorized into prime trees using &:

○
○ ● ○ ● ○

= ○ ● &
○ ● ○ ● ○

= ○ ● & ○ ● ● & ● ○

20 / 30

Decidability and Complexity of Tree Share Formulas

Decidability and Complexity results

From & to string concatenation

Tree factorization

Prime trees

A tree τ ∈ T/{●, ○} is prime iff τ = τ1 & τ2 then either τ1 = ● or
τ2 = ●.

A tree share τ can be factorized into prime trees using &:

○
○ ● ○ ● ○

= ○ ● &
○ ● ○ ● ○

= ○ ● & ○ ● ● & ● ○

20 / 30

Decidability and Complexity of Tree Share Formulas

Decidability and Complexity results

From & to string concatenation

Tree factorization(cont.)

Unique factorization

Let τ ∈ T/{○, ●} then there exists a unique sequence of prime trees
τ1, . . . , τn such that:

τ = τ1 & . . . & τn
Furthermore, the factorization problem is in PTIME.

Proof sketch: By induction on the structure of the tree.

21 / 30

Decidability and Complexity of Tree Share Formulas

Decidability and Complexity results

From & to string concatenation

Infinite alphabet

Let Tp ⊂ T be the set of prime trees then Tp is countably
infinite.

Tp is our alphabet for the word equation but we need to
reduce it to finite alphabet.

22 / 30

Decidability and Complexity of Tree Share Formulas

Decidability and Complexity results

From & to string concatenation

Infinite alphabet

Let Tp ⊂ T be the set of prime trees then Tp is countably
infinite.

Tp is our alphabet for the word equation but we need to
reduce it to finite alphabet.

22 / 30

Decidability and Complexity of Tree Share Formulas

Decidability and Complexity results

From & to string concatenation

Infinite alphabet(cont.)

From infinity to finite

Let Σ be the set of word equations and inequations over infinite
alphabet A then Σ has a solution iff it has a solution over some
finite alphabet B ⊂ A such that:

1 A(Σ) ⊂ B
2 ∣B∣ = ∣A(Σ)∣ + n where n is the number of inequations in Σ.

The choice of the extra letters in B is not important.

23 / 30

Decidability and Complexity of Tree Share Formulas

Decidability and Complexity results

From & to string concatenation

Example

v1 & v2 &
○ ● ○ = ○ ● ○

& v2 & v1

v1 & v2 & ● ○ & ○ ● = ○ ● & ● ○ & v2 & v1

v1v2ab = bav2v1 solution: v1 = b, v2 = a

○ ● & ● ○ & ● ○ & ○ ● = ○ ● & ● ○ & ● ○ & ○ ●

24 / 30

Decidability and Complexity of Tree Share Formulas

Decidability and Complexity results

From & to string concatenation

Example

v1 & v2 &
○ ● ○ = ○ ● ○

& v2 & v1

v1 & v2 & ● ○ & ○ ● = ○ ● & ● ○ & v2 & v1

v1v2ab = bav2v1 solution: v1 = b, v2 = a

○ ● & ● ○ & ● ○ & ○ ● = ○ ● & ● ○ & ● ○ & ○ ●

24 / 30

Decidability and Complexity of Tree Share Formulas

Decidability and Complexity results

From & to string concatenation

Example

v1 & v2 &
○ ● ○ = ○ ● ○

& v2 & v1

v1 & v2 & ● ○ & ○ ● = ○ ● & ● ○ & v2 & v1

v1v2ab = bav2v1

solution: v1 = b, v2 = a

○ ● & ● ○ & ● ○ & ○ ● = ○ ● & ● ○ & ● ○ & ○ ●

24 / 30

Decidability and Complexity of Tree Share Formulas

Decidability and Complexity results

From & to string concatenation

Example

v1 & v2 &
○ ● ○ = ○ ● ○

& v2 & v1

v1 & v2 & ● ○ & ○ ● = ○ ● & ● ○ & v2 & v1

v1v2ab = bav2v1 solution: v1 = b, v2 = a

○ ● & ● ○ & ● ○ & ○ ● = ○ ● & ● ○ & ● ○ & ○ ●

24 / 30

Decidability and Complexity of Tree Share Formulas

Decidability and Complexity results

From & to string concatenation

Example

v1 & v2 &
○ ● ○ = ○ ● ○

& v2 & v1

v1 & v2 & ● ○ & ○ ● = ○ ● & ● ○ & v2 & v1

v1v2ab = bav2v1 solution: v1 = b, v2 = a

○ ● & ● ○ & ● ○ & ○ ● = ○ ● & ● ○ & ● ○ & ○ ●

24 / 30

Decidability and Complexity of Tree Share Formulas

Decidability and Complexity results

From & to string concatenation

Find a decidable fragment for &

Since the first-order theory of S = (T,&) is undecidable, we want
to find a decidable fragment of & together with (⊔,⊓, 2̄).

25 / 30

Decidability and Complexity of Tree Share Formulas

Decidability and Complexity results

Tree Automatic Structures

Connection to Tree Automatic Structures

Let &τ be the unary function over trees such that

&τ(τ ′) = τ ′ & τ

Example:
&
○ ●

(● ● ○
) = ● ● ○

& ○ ● =
○ ● ○ ● ○

Tree automatic structure

Let T = (T,⊔,⊓, 2̄,&τ) then T is tree automatic, i.e., its domain
and relations are recognized by tree automata. Consequently, the
first-order theory of T is decidable [Blumensath (1999);
Blumensath and Gradel (2004)].

26 / 30

Decidability and Complexity of Tree Share Formulas

Decidability and Complexity results

Tree Automatic Structures

Connection to Tree Automatic Structures

Let &τ be the unary function over trees such that

&τ(τ ′) = τ ′ & τ
Example:

&
○ ●

(● ● ○
) = ● ● ○

& ○ ● =
○ ● ○ ● ○

Tree automatic structure

Let T = (T,⊔,⊓, 2̄,&τ) then T is tree automatic, i.e., its domain
and relations are recognized by tree automata. Consequently, the
first-order theory of T is decidable [Blumensath (1999);
Blumensath and Gradel (2004)].

26 / 30

Decidability and Complexity of Tree Share Formulas

Decidability and Complexity results

Tree Automatic Structures

Connection to Tree Automatic Structures

Let &τ be the unary function over trees such that

&τ(τ ′) = τ ′ & τ
Example:

&
○ ●

(● ● ○
) = ● ● ○

& ○ ● =
○ ● ○ ● ○

Tree automatic structure

Let T = (T,⊔,⊓, 2̄,&τ) then T is tree automatic, i.e., its domain
and relations are recognized by tree automata. Consequently, the
first-order theory of T is decidable [Blumensath (1999);
Blumensath and Gradel (2004)].

26 / 30

Decidability and Complexity of Tree Share Formulas

Conclusion

Outline

1 Introduction

2 Decidability and Complexity results
Model for Countable Atomless Boolean Algebra
From & to string concatenation
Tree Automatic Structures

3 Conclusion

27 / 30

Decidability and Complexity of Tree Share Formulas

Conclusion

Contributions

We show that M = (⊔,⊓,2, ●, ○) forms a Countably Atomless
Boolean Algebra.

We reduce & to string concatenation.

We show T = (T,⊔,⊓, 2̄,&τ) is tree-automatic.

28 / 30

Decidability and Complexity of Tree Share Formulas

Conclusion

Future Work

Complexity of (T,⊓,⊔) (∃-theory and first-order theory).

Decidability of (T,⊓,⊔,&) (∃-theory).

Complexity of T = (T,⊔,⊓, 2̄,&τ) (∃-theory and first-order
theory).

Extension of word equation to tree equation.

Thank you! ,

29 / 30

Decidability and Complexity of Tree Share Formulas

Conclusion

Proof sketch:

Let f be a solution of Σ. For each inequation w1 ≠ w2 to hold,
it suffices to have a single position where they differs.

Therefore, there is at most one letter ai /∈ A(Σ) in each
inequation that we need to preserve.

For other letters bi /∈ A(Σ), we simply replace them with a
letter in A(Σ).
As a result, the new solution satisfies the alphabet constraint.

30 / 30

Decidability and Complexity of Tree Share Formulas

Conclusion

Proof sketch:

Let f be a solution of Σ. For each inequation w1 ≠ w2 to hold,
it suffices to have a single position where they differs.

Therefore, there is at most one letter ai /∈ A(Σ) in each
inequation that we need to preserve.

For other letters bi /∈ A(Σ), we simply replace them with a
letter in A(Σ).
As a result, the new solution satisfies the alphabet constraint.

30 / 30

Decidability and Complexity of Tree Share Formulas

Conclusion

Proof sketch:

Let f be a solution of Σ. For each inequation w1 ≠ w2 to hold,
it suffices to have a single position where they differs.

Therefore, there is at most one letter ai /∈ A(Σ) in each
inequation that we need to preserve.

For other letters bi /∈ A(Σ), we simply replace them with a
letter in A(Σ).

As a result, the new solution satisfies the alphabet constraint.

30 / 30

Decidability and Complexity of Tree Share Formulas

Conclusion

Proof sketch:

Let f be a solution of Σ. For each inequation w1 ≠ w2 to hold,
it suffices to have a single position where they differs.

Therefore, there is at most one letter ai /∈ A(Σ) in each
inequation that we need to preserve.

For other letters bi /∈ A(Σ), we simply replace them with a
letter in A(Σ).
As a result, the new solution satisfies the alphabet constraint.

30 / 30

Decidability and Complexity of Tree Share Formulas

References

A. Blumensath. Automatic Structures. PhD thesis, RWTH
Aachen, 1999.

A. Blumensath and E. Gradel. Finite presentations of infinite
structures: automata and interpretations. In Theory of
Computer Systems, pages 641–674, 2004.

John Boyland. Checking interference with fractional permissions.
In Static Analysis, 10th International Symposium, SAS 2003,
San Diego, CA, USA, June 11-13, 2003, Proceedings, pages
55–72, 2003. doi: 10.1007/3-540-44898-5 4. URL
http://dx.doi.org/10.1007/3-540-44898-5_4.

Robert Dockins, Aquinas Hobor, and Andrew W. Appel. A fresh
look at separation algebras and share accounting. In
Programming Languages and Systems, 7th Asian Symposium,
APLAS 2009, Seoul, Korea, December 14-16, 2009. Proceedings,
pages 161–177, 2009. doi: 10.1007/978-3-642-10672-9 13.
URL http://dx.doi.org/10.1007/978-3-642-10672-9_13.

30 / 30

http://dx.doi.org/10.1007/3-540-44898-5_4
http://dx.doi.org/10.1007/978-3-642-10672-9_13

Decidability and Complexity of Tree Share Formulas

Conclusion

Dexter Kozen. Complexity of boolean algebras. In Theoretical
Computer Science 10, pages 221–247, 1980.

Matthew Parkinson. Local Reasoning for Java. PhD thesis,
University of Cambridge, 2005.

Wojciech Plandowski. Satisfiability of word equations with
constants is in PSPACE. In 40th Annual Symposium on
Foundations of Computer Science, FOCS ’99, 17-18 October,
1999, New York, NY, USA, pages 495–500, 1999. doi:
10.1109/SFFCS.1999.814622. URL
http://dx.doi.org/10.1109/SFFCS.1999.814622.

Klaus U. Schulz. Makanin’s algorithm for word equations - two
improvements and a generalization. In Word Equations and
Related Topics, First International Workshop, IWWERT ’90,
Tübingen, Germany, October 1-3, 1990, Proceedings, pages
85–150, 1990. doi: 10.1007/3-540-55124-7 4. URL
http://dx.doi.org/10.1007/3-540-55124-7_4.

30 / 30

http://dx.doi.org/10.1109/SFFCS.1999.814622
http://dx.doi.org/10.1007/3-540-55124-7_4

	Introduction
	Decidability and Complexity results
	Model for Countable Atomless Boolean Algebra
	From to string concatenation
	Tree Automatic Structures

	Conclusion

