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• Resource: memory cell, file on disk, network 

connection… 
 
 

• Shared control: usually between two or more 
parallel computations 
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Accounting 
• How we keep track of who owns how much 

• e.g., a share is a rational in [0, 1] 
• And how ownership gets transferred 

• we combine shares using partial addition, i.e. 
0.25 + 0.25 = 0.5      but    0.75 + 0.75 is undefined 
 

• Not the same as policy, which maps shares to behaviors:  
• {1} : can write to memory cell 
• (0,1] : can read from memory cell 
• {0} : cannot use memory cell 7 



Tree shares 
• Rationals do not satisfy exactly the “right” axioms 

• See Parkinson’s thesis or our APLAS 09 paper for why. 
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Tree shares 
• Rationals do not satisfy exactly the “right” axioms 
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Tree shares 
• Rationals do not satisfy exactly the “right” axioms 

• See Parkinson’s thesis or our APLAS 09 paper for why. 
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• Full share:        ² 
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These are not the  
same half share! 



Tree shares 
• Rationals do not satisfy exactly the “right” axioms 

• See Parkinson’s thesis or our APLAS 09 paper for why. 
 

• Solution: use Boolean binary trees for shares 
• Full share:        ² 
• Empty share:        ± 
• Left half: 

 

• Right half: 
 

• First quarter: 
 

• etc. 
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Canonical Forms 
• Note we wrote the first quarter as           instead of 

   

              .  This is deliberate; the second is not in 
 

canonical form, which ensures unique representations. 
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Canonical Forms 
• Note we wrote the first quarter as           instead of 

   

              .  This is deliberate; the second is not in 
 

canonical form, which ensures unique representations. 
 

• Define a reflexive, transitive relation      from: 
 
 
 

• A tree is in canonical form when it is in the most 
compact representation under     . 
 
 

16 

[R. Dockins, A. Hobor, A. W. Appel.  A Fresh Look at Separation Algebras and Share Accounting, APLAS 2009] 



Addition 
• To add trees (a partial operation), we 

17 

[R. Dockins, A. Hobor, A. W. Appel.  A Fresh Look at Separation Algebras and Share Accounting, APLAS 2009] 



Addition 
• To add trees (a partial operation), we 

1. Expand them using ≅ to the same shape 

18 

[R. Dockins, A. Hobor, A. W. Appel.  A Fresh Look at Separation Algebras and Share Accounting, APLAS 2009] 



Addition 
• To add trees (a partial operation), we 

1. Expand them using ≅ to the same shape 
2. Join leafwise (± © x = x   and    x © ± = x) 
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Addition 
• To add trees (a partial operation), we 

1. Expand them using ≅ to the same shape 
2. Join leafwise (± © x = x   and    x © ± = x) 
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² © ± = ² 

[R. Dockins, A. Hobor, A. W. Appel.  A Fresh Look at Separation Algebras and Share Accounting, APLAS 2009] 

Emphasis: ² © ² is undefined! 



Addition 
• To add trees (a partial operation), we 

1. Expand them using ≅ to the same shape 
2. Join leafwise (± © x = x   and    x © ± = x) 
3. Re-canonicalize 
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Using shares in separation logic 
• Update “maps-to” to take a tree-share: 

• e  e’ 
• the current heap has a single cell e, whose value is 

e’, and which is owned with tree-fraction ¼ 

 
• (5  7) * (8  5) * (5  7)  = 
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Using shares in separation logic 

7 5: 7 7 5: 7 7 8: 5 
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¼ 

These shares cannot be added together! 

• Update “maps-to” to take a tree-share: 
• e  e’ 
• the current heap has a single cell e, whose value is 

e’, and which is owned with tree-fraction ¼ 

 
• (5  7) * (8  5) * (5  7)  =   False 
 
                *                *                  =  False  
 
                                                      



Using shares in separation logic 

7 5: 7 7 5: 7 7 8: 5 
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¼ 

These shares are  
compatible 

• Update “maps-to” to take a tree-share: 
• e  e’ 
• the current heap has a single cell e, whose value is 

e’, and which is owned with tree-fraction ¼ 
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Using shares in separation logic 
• Update “maps-to” to take a tree-share: 

• e  e’ 
• the current heap has a single cell e, whose value is 

e’, and which is owned with tree-fraction ¼ 

 
• (5  7) * (8  5) * (5  7)  = (5  7) * (8  5)  
 
                *                *                  =                *  
 
                                                     = 

7 5: 7 7 5: 7 7 5: 7 7 8: 5 7 8: 5 

7 5: 7 

7 8: 5 26 
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Plan of attack 
1. Fractional Shares 

 
2. Verification Tools 

 
3. Our Decision Procedures 

 
4. Completeness 

 
5. Experimental Results 
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Verification tools 
• Once you have a good share model, and have 

integrated it into a program logic, you would like to 
use the logic to prove programs. 
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Verification tools 
• Once you have a good share model, and have 

integrated it into a program logic, you would like to 
use the logic to prove programs. 
 

• Even better, you’d like to write a program that uses 
your logic (and thus, the share model) to verify 
programs for you! 
 

• We have modified the HIP/SLEEK toolchain to verify 
programs using fractional permissions. 30 

[H. H. Nguyen, C. David, S. Qin, W. N. Chin. Automated verification of shape and size properties via separation logic. VMCAI 2007] 



Actually, modifying SLEEK is 
not the major difficulty… 
• SLEEK (and many other toolchains) maintains a 

stable of backend provers for specific domains. 
• Omega (Presburger arithmetic) 
• MONA (bags, etc.) 
• Redlog (real arithmetic) 
• etc. 
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Actually, modifying SLEEK is 
not the major difficulty… 
• SLEEK (and many other toolchains) maintains a 

stable of backend provers for specific domains. 
• Omega (Presburger arithmetic) 
• MONA (bags, etc.) 
• Redlog (real arithmetic) 
• etc. 
 

• We fit into this pattern: our major accomplishment 
is a backend prover for tree-shares.  Our prover 
should be re-usable (as a library or standalone) in 
many other toolchains. 
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SLEEK’s job 
• Accordingly, SLEEK’s job is to isolate the “share-

related” subproblems from SL entailments. 
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SLEEK’s job 
• Accordingly, SLEEK’s job is to isolate the “share-

related” subproblems from SL entailments. 
 

• Really simple example: 
 
• from  x  v Æ s1 =       Æ s2  =            `    x  v 
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SLEEK’s job 
• Accordingly, SLEEK’s job is to isolate the “share-

related” subproblems from SL entailments. 
 

• Really simple example: 
 
• from  x  v Æ s1 =       Æ s2  =            `    x  v 

 
• we reach s1 =         Æ s2 =          `   s1 = s2, 
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SLEEK’s job 
• Accordingly, SLEEK’s job is to isolate the “share-

related” subproblems from SL entailments. 
 

• Really simple example: 
 
• from  x  v Æ s1 =       Æ s2  =            `    x  v 

 
• we reach s1 =         Æ s2 =          `   s1 = s2, 

 
• which is satisfied by a decidable equality check: 

       =        (false). 
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s1 s2 
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Formal statement of problem 
• SLEEK outputs systems of share equations: 

•  Á  ´  9 v. Á   
      |   Á1 Æ Á2  
      |   v1 © v2 = v3  
      |   v1 = v2   
      |   v = Â 
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SLEEK does not need to 
know much about the 
underlying domain of 
tree-shares to isolate the 
associated facts 
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This output format is a 
useful modularity 
boundary we discovered 
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Formal statement of problem 
• SLEEK outputs systems of share equations: 

•  Á  ´  9 v. Á   
      |   Á1 Æ Á2  
      |   v1 © v2 = v3  
      |   v1 = v2   
      |   v = Â 

 
• SLEEK can then ask two kinds of questions: 

• (SAT) Is a given system satisfiable?  (Used to prune 
unfeasible verification paths) 

• (IMPL) Does one system of equations imply another? 
43 
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2. Verification Tools 

 
3. Our Decision Procedures 

 
4. Completeness 

 
5. Experimental Results 
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Why the problem is hard 
• Like the rationals, the space of tree-shares is dense: 

that is, given any nonempty share, you can divide it 
into two nonempty shares 
• Need this to verify divide-and-conquer algorithms! 
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Why the problem is hard 
• Like the rationals, the space of tree-shares is dense: 

that is, given any nonempty share, you can divide it 
into two nonempty shares 
• Need this to verify divide-and-conquer algorithms! 
 

• Thus, it appears as though finite search is not enough: 
there could always be a solution to SAT (or a 
counterexample to IMPL) “just a little deeper” 
 

• Surprisingly, this intution is wrong: we do a shape-
guided finite search, armed with some completeness 
results that say our finite search is sufficient. 
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Decomposition (SAT) 
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2. xr  ©             = yr    Æ     yr © zr = ² 
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Decomposition (SAT) 
• We want to know if the following system is satisfiable: 
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• We split into two systems… 
 
1. xl  ©           = yl      Æ      yl © zl  =  

 
 

2. xr  ©             = yr    Æ     yr © zr = ² 

51 Theorem: The original system is satisfiable if  
and only if both subsystems are satisfiable 



Decomposition (SAT) 
• We want to know if the following system is satisfiable: 

 
• x  ©                      =  y     Æ     y  ©  z =   

 

• We split into two systems… and then keep splitting… 
 
1. xl  ©           = yl      Æ      yl © zl  =  

 
 

2. xr  ©             = yr    Æ     yr © zr = ² 
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Decomposition (SAT) 
• We want to know if the following system is satisfiable: 

 
• x  ©                      =  y     Æ     y  ©  z =   

 

• We split into two systems… and then keep splitting… 
 
1. xl  ©           = yl      Æ      yl © zl  =  

a) xll © ² = yll    Æ    yll © zll = ² 
b) xlr © ± = ylr    Æ   ylr © zlr = ± 

2. xr  ©             = yr    Æ     yr © zr = ² 
 

a) xrl ©      = yrl    Æ  yrl © zrl = ² 
b) xrr © ² = yrr    Æ   yrr © zrr = ² 
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Once every constant is ² or ±… 
• We apply a completeness theorem (shown later) that 

tells us that if there is a solution at all, there must 
exist a solution at the height of the system 
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Boolean SAT (with existentials) problem 
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Once every constant is ² or ±… 
• We apply a completeness theorem (shown later) that 

tells us that if there is a solution at all, there must 
exist a solution at the height of the system 
 

• That lets us translate our problem over shares into a 
Boolean SAT (with existentials) problem 
• Example: x © y = ²    Ã    (x Ç y) Æ (:x Ç :y) 
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Once every constant is ² or ±… 
• We apply a completeness theorem (shown later) that 

tells us that if there is a solution at all, there must 
exist a solution at the height of the system 
 

• That lets us translate our problem over shares into a 
Boolean SAT (with existentials) problem 
• Example: x © y = ²    Ã    (x Ç y) Æ (:x Ç :y) 

 
• Then we hand this problem to an SMT solver (e.g. Z3) 
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Decomposition (IMPL) 
• The procedure for IMPL is very similar, but we have 

to decompose across the entailment: 
 
• From   x  ©                   =  y     `    9 z.  y  ©  z =   
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Decomposition (IMPL) 
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• From   x  ©                   =  y     `    9 z.  y  ©  z =   

 

1. xl  ©         = yl      `   9 zl.  yl © zl  =  
 

2. xr  ©             = yr    `    9 zr. yr © zr = ² 
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Decomposition (IMPL) 
• The procedure for IMPL is very similar, but we have 

to decompose across the entailment: 
 
• From   x  ©                   =  y     `    9 z.  y  ©  z =   

 

1. xl  ©         = yl      `   9 zl.  yl © zl  =  
 

2. xr  ©             = yr    `    9 zr. yr © zr = ² 
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Decomposition (IMPL) 
• The procedure for IMPL is very similar, but we have 

to decompose across the entailment: 
 
• From   x  ©                   =  y     `    9 z.  y  ©  z =   

 

1. xl  ©         = yl      `   9 zl.  yl © zl  =  
 

2. xr  ©             = yr    `    9 zr. yr © zr = ² 
 

• Once we have reached height zero, we apply a 
more complicated completeness theorem and 
then again translate to Boolean SAT for Z3.  
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3. Our Decision Procedures 
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62 



Completeness theorem (SAT) 
• Theorem 1: finite search for SAT 

• Given §,   9¾. ¾ ² §    iff    9¾. |¾|=|§|  Æ  ¾ ² § 
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from tree variables 
to tree constants) 



Completeness theorem (SAT) 
• Theorem 1: finite search for SAT 

• Given §,   9¾. ¾ ² §    iff    9¾. |¾|=|§|  Æ  ¾ ² § 

66 

A system of  
equations 

Satisfaction: when variables in 
§ are assigned values  from ¾, 
then every equation holds. 

A solution (map 
from tree variables 
to tree constants) 



Completeness theorem (SAT) 
• Theorem 1: finite search for SAT 

• Given §,   9¾. ¾ ² §    iff    9¾. |¾|=|§|  Æ  ¾ ² § 
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A system of  
equations 

A solution (map 
from tree variables 
to tree constants) 

Satisfaction: when variables in 
§ are assigned values  from ¾, 
then every equation holds. 

Height: highest 
tree-constant 
contained in ¾ or §. 



Completeness theorem (SAT) 
• Theorem 1: finite search for SAT 

• Given §,   9¾. ¾ ² §    iff    9¾. |¾|=|§|  Æ  ¾ ² §  

 

• Strategy: 
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Completeness theorem (SAT) 
• Theorem 1: finite search for SAT 

• Given §,   9¾. ¾ ² §    iff    9¾. |¾|=|§|  Æ  ¾ ² §  

 

• Strategy: 
• Definition by example: rounding a tree 
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Completeness theorem (SAT) 
• Theorem 1: finite search for SAT 
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Completeness theorem (SAT) 
• Theorem 1: finite search for SAT 

• Given §,   9¾. ¾ ² §    iff    9¾. |¾|=|§|  Æ  ¾ ² §  

 

• Strategy: 
• Definition by example: rounding a tree 

 
• Proofs by example: properties of rounding 

 
• Proof sketch of main theorem 
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Tree rounding 
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Tree rounding 
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3. Refold 2. Take left 
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Tree rounding 
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• Define          “left round tree ¿ to height n” as follows: 
1. Unfold ¿ to height n (height starts at 0) 
2. Take every left leaf at height n 

1. Unfold to 
     height 3 

3. Refold 2. Take left 
     leaves 



Tree rounding 
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• Define          “left round tree ¿ to height n” as follows: 
1. Unfold ¿ to height n (height starts at 0) 
2. Take every left leaf at height n 

3. Refold as needed 
 
 

 
 

1. Unfold to 
     height 3 

3. Refold 2. Take left 
     leaves 



Tree rounding 

76 

Unfold to height 3 Refold Take right 
leaves 

• Define          “left round tree ¿ to height n” as follows: 
1. Unfold ¿ to height n (height starts at 0) 
2. Take every left leaf at height n 

3. Refold as needed 
 
 

 
 

• We can also define “right round” analogously: 

1. Unfold to 
     height 3 

3. Refold 2. Take left 
     leaves 



Key properties of rounding 
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1. Rounding a tree of height n to any height strictly 
greater than n does not change the tree. 

 

 



Key properties of rounding 
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Unfold Refold Take left 
leaves 

1. Rounding a tree of height n to any height strictly 
greater than n does not change the tree. 

 

• “Proof.” 



Key properties of rounding 
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Unfold Refold Take left 
leaves 

1. Rounding a tree of height n to any height strictly 
greater than n does not change the tree. 

 

• “Proof.” 

In general, x  Ã x  x,  
and then we take the  
left/right, leaving x 



Key properties of rounding 
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Unfold Refold Take left 
leaves 

1. Rounding a tree of height n to any height strictly 
greater than n does not change the tree. 

 

• “Proof.” 
 
 
 
 
 

2. If                    , then                                         . 



“Proof.” 
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Unfold 

Take left 
leaves 

Refold 

Apply 
round 
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“Proof.” 
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Premise 

Unfold 

Take left 
leaves 

Refold 

Apply 
round 

They joined before – joining occurs leafwise –  
so of course they join after! 



“Proof.” 
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Premise 

Unfold 

Take left 
leaves 

Refold 

Apply 
round 



Proof sketch: finite SAT 
• Theorem 1: finite search for SAT 

• Given §,   9¾. ¾ ² §    iff    9¾. |¾|=|§|  Æ  ¾ ² § 

 

• Ã : trivial. 
 

• ! : Take ¾ and repeatedly round it until it is of 
height |§|.  Each equation in |§| will still hold as 
long as we also round all constants (property 2), and 
since we are never rounding to height |§|, the 
constants in § are not changing (property 1), i.e., it 
is the same system of equations. 
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Completeness theorem (IMPL) 
• Theorem 2: finite search for IMPL 

• Given § and §’,   (8 ¾. ¾ ² §  ! ¾ ² §’)   iff 
                                 (8 ¾. |¾|=|§| ! ¾ ² §  ! ¾ ² §’) 
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Completeness theorem (IMPL) 
• Theorem 2: finite search for IMPL 

• Given § and §’,   (8 ¾. ¾ ² §  ! ¾ ² §’)   iff 
                                 (8 ¾. |¾|=|§| ! ¾ ² §  ! ¾ ² §’) 

• Strategy: 
• Definition by example: averaging two trees 

 
• Proofs by example: properties of averaging 

 
• Proof sketch of main theorem 
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Averaging Trees 
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• Define                “averaging two trees at height n”: 
 

Unfold to n-1 Refold 
Combine pairwise 
left and right leaves 



Averaging Trees 

91 

• Define                “averaging two trees at height n”: 
1. Unfold ¿ to height n-1 

 

1. Unfold to n-1 Refold 
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Averaging Trees 
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• Define                “averaging two trees at height n”: 
1. Unfold ¿ to height n-1 
2. Combine pairwise: left argument become left leaves 

in result; right argument become right leaves 
 

Refold 
2. Combine pairwise 
left and right leaves 

1. Unfold to n-1 



Averaging Trees 
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• Define                “averaging two trees at height n”: 
1. Unfold ¿ to height n-1 
2. Combine pairwise: left argument become left leaves 

in result; right argument become right leaves 
3. Refold as needed 

 

3. Refold 
2. Combine pairwise 
left and right leaves 

1. Unfold to n-1 



Key properties of averaging 
1. Averaging is the inverse of rounding, i.e., 
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Key properties of averaging 
1. Averaging is the inverse of rounding, i.e., 

 
• “Proof.” 

 
 
 
 
 
 

2. If                       and                      , then  
 

                                                                 . 
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Premise 

Premise 

Apply 
average 

Unfold 

Refold 

Calculate 

Again, because joining occurs leafwise, 
if they joined before they join after! 



“Proof.” 
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Premise 

Premise 

Apply 
average 

Unfold 

Refold 

Calculate 



Proof sketch: finite IMPL 
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• Theorem 2: finite search for IMPL 
• Given § and §’,   (8 ¾. ¾ ² §  ! ¾ ² §’)   iff 

                                 (8 ¾. |¾|=|§| ! ¾ ² §  ! ¾ ² §’) 

• !: trivial. 
• Ã: Consider the case when |¾|=|§|+1.  By the 

rounding lemmas, both the left round ¾l and right 
round ¾r of ¾ are still solutions for § (and have 
height |§|).  Then we apply our hypothesis to learn 
that ¾l and ¾r are also solutions of §’.  By averaging 
property 2, their average is a solution of §’, and by 
averaging property 1, their average is equal to ¾. 

 



Plan of attack 
1. Fractional Shares 

 
2. Verification Tools 

 
3. Our Decision Procedures 

 
4. Completeness 

 
5. Experimental Results 
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HIP/SLEEK Embedding 
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• Old tool is very fast… 



HIP/SLEEK Embedding 
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• But it is incomplete… first two groups of tests were 
tweaked to avoid the (many) “dark zones” 



HIP/SLEEK Embedding 
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• New tool is slower, although the rest of HIP/SLEEK 
takes more 3,000ms on the first four tests 



HIP/SLEEK Embedding 
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• Most of the time is spent in the SMT solver (and 
communication/process overhead) 



HIP/SLEEK Embedding 
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• And, the new procedures are complete! 



Standalone 
• It’s actually really hard to develop tests to aggressive 

exercise the share procedures – in lots of code it will 
happen, but finding small examples is tricky. 
 
 

112 



Standalone 
• It’s actually really hard to develop tests to aggressive 

exercise the share procedures – in lots of code it will 
happen, but finding small examples is tricky. 
 

• We developed a standalone benchmark of 53 SAT 
and 50 IMPLY queries to stress the solver. 
 

113 



Standalone 
• It’s actually really hard to develop tests to aggressive 

exercise the share procedures – in lots of code it will 
happen, but finding small examples is tricky. 
 

• We developed a standalone benchmark of 53 SAT 
and 50 IMPLY queries to stress the solver. 
 

• Our new solver solved the entire suite in 1.4s. 
 

114 



Standalone 
• It’s actually really hard to develop tests to aggressive 

exercise the share procedures – in lots of code it will 
happen, but finding small examples is tricky. 
 

• We developed a standalone benchmark of 53 SAT 
and 50 IMPLY queries to stress the solver. 
 

• Our new solver solved the entire suite in 1.4s. 
 

• Our old solver could solve fewer than 10%. 115 
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