Decision Procedures over Sophisticated Fractional Permissions

Le Xuan Bach, Cristian Gherghina, Aquinas Hobor National University of Singapore

What are Fractional Permissions?

• Accounting for shared control of a resource

What are Fractional Permissions?

- Accounting for shared control of a resource
- Resource: memory cell, file on disk, network connection...

What are Fractional Permissions?

- Accounting for shared control of a resource
- Resource: memory cell, file on disk, network connection...

 Shared control: usually between two or more parallel computations

Accounting

- How we keep track of who owns how much
 - e.g., a **share** is a rational in [0, 1]

Accounting

- How we keep track of who owns how much
 - e.g., a **share** is a rational in [0, 1]
- And how ownership gets transferred
 - we combine shares using partial addition, i.e.
 0.25 + 0.25 = 0.5 but 0.75 + 0.75 is undefined

Accounting

- How we keep track of who owns how much
 - e.g., a **share** is a rational in [0, 1]
- And how ownership gets transferred
 - we combine shares using partial addition, i.e.
 0.25 + 0.25 = 0.5 but 0.75 + 0.75 is undefined
- Not the same as **policy**, which maps shares to behaviors:
 - {1} : can write to memory cell
 - (0,1] : can read from memory cell
 - {0} : cannot use memory cell

- Rationals do not satisfy exactly the "right" axioms
 - See Parkinson's thesis or our APLAS 09 paper for why.

- Rationals do not satisfy exactly the "right" axioms
 - See Parkinson's thesis or our APLAS 09 paper for why.
- Solution: use Boolean binary trees for shares
 - Full share: •

- Rationals do not satisfy exactly the "right" axioms
 - See Parkinson's thesis or our APLAS 09 paper for why.
- Solution: use Boolean binary trees for shares
 - Full share: •
 - Empty share: o

- Rationals do not satisfy exactly the "right" axioms
 - See Parkinson's thesis or our APLAS 09 paper for why.
- Solution: use Boolean binary trees for shares
 - Full share: •
 - Empty share: o
 - Left half: $\widehat{\bullet \circ}$
 - Right half:

[R. Dockins, A. Hobor, A. W. Appel. A Fresh Look at Separation Algebras and Share Accounting, APLAS 2009]

 $\widehat{}$

- Rationals do not satisfy exactly the "right" axioms
 - See Parkinson's thesis or our APLAS 09 paper for why.
- Solution: use Boolean binary trees for shares

Ο

- Full share: •
- Empty share:
- Left half:
- Right half:

These are not the same half share!

- Rationals do not satisfy exactly the "right" axioms
 - See Parkinson's thesis or our APLAS 09 paper for why.
- Solution: use Boolean binary trees for shares
 - Full share: •
 - Empty share: o
 - Left half: $\widehat{\bullet \circ}$
 - Right half: $\widehat{\circ} \bullet$
 - First quarter: $\int_{\bullet}^{\bullet} \circ$

• etc.

Canonical Forms

• Note we wrote the first quarter as - instead of

 $\sim \sim \sim \sim \sim \sim$. This is deliberate; the second is not in

canonical form, which ensures unique representations.

Canonical Forms

• Note we wrote the first quarter as 600 instead of 6000. This is deliberate; the second is not in

canonical form, which ensures unique representations.

• Define a reflexive, transitive relation \cong from:

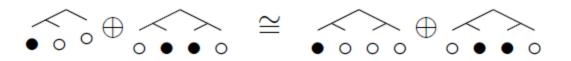
Canonical Forms

- Define a reflexive, transitive relation \cong from:

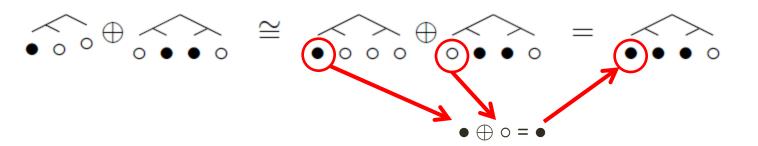
• A tree is in canonical form when it is in the most compact representation under \cong .

• To add trees (a partial operation), we

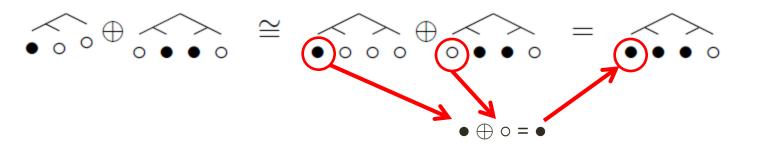
- To add trees (a partial operation), we
 - 1. Expand them using \cong to the same shape



- To add trees (a partial operation), we
 - 1. Expand them using \cong to the same shape
 - 2. Join leafwise ($\circ \oplus x = x$ and $x \oplus \circ = x$)



- To add trees (a partial operation), we
 - 1. Expand them using \cong to the same shape
 - 2. Join leafwise ($\circ \oplus x = x$ and $x \oplus \circ = x$)



Emphasis: • \oplus • is undefined!

- To add trees (a partial operation), we
 - 1. Expand them using \cong to the same shape
 - 2. Join leafwise ($\circ \oplus x = x$ and $x \oplus \circ = x$)
 - 3. Re-canonicalize

- Update "maps-to" to take a tree-share:
 - $e \stackrel{\pi}{\mapsto} e'$
 - the current heap has a single cell e, whose value is e', and which is owned with tree-fraction π

•
$$(5\overset{\frown}{\mapsto}^{\circ}7) * (8\overset{\frown}{\mapsto}^{\circ}5) * (5\overset{\frown}{\mapsto}^{\circ}7) =$$

- Update "maps-to" to take a tree-share:
 - $e \stackrel{\pi}{\mapsto} e'$
 - the current heap has a single cell e, whose value is e', and which is owned with tree-fraction π

•
$$(5\overset{\frown}{\mapsto}^{\circ}7) * (8\overset{\frown}{\mapsto}^{\circ}5) * (5\overset{\frown}{\mapsto}^{\circ}7) = False$$

• Update "maps-to" to take a tree-share:

- e ⊢ e'
- the current heap has a single cell e, whose value is e', and which is owned with tree-fraction π

•
$$(5 \rightarrow 7) * (8 \rightarrow 5) * (5 \rightarrow 7) = False$$

5: 7 * 8: 5 * 5: 7 = False

These shares cannot be added together!

• Update "maps-to" to take a tree-share:

- e ⊢ e'
- the current heap has a single cell e, whose value is e', and which is owned with tree-fraction π

•
$$(5 + 7) * (8 + 5) * (5 + 7) =$$

5: 7 * 8: 5 * 5: 7 =
These shares are compatible

• Update "maps-to" to take a tree-share:

- e ⊢ e'
- the current heap has a single cell e, whose value is e', and which is owned with tree-fraction π

•
$$(5 \stackrel{\circ}{\mapsto} \stackrel{\circ}{\to} 7) * (8 \stackrel{\circ}{\mapsto} \stackrel{\circ}{\to} 5) * (5 \stackrel{\circ}{\mapsto} \stackrel{\circ}{\to} 7) = (5 \stackrel{\circ}{\mapsto} \stackrel{\circ}{\to} 7) * (8 \stackrel{\circ}{\mapsto} \stackrel{\circ}{\to} 5)$$

5: $7 * 8: 5 * 5: 7 = 5: 7 * 8: 5$

$$= 8: 5$$

5:

Plan of attack

1. Fractional Shares

- 2. Verification Tools
- 3. Our Decision Procedures
- 4. Completeness
- 5. Experimental Results

Verification tools

 Once you have a good share model, and have integrated it into a program logic, you would like to use the logic to prove programs.

Verification tools

- Once you have a good share model, and have integrated it into a program logic, you would like to use the logic to prove programs.
- Even better, you'd like to write a program that uses your logic (and thus, the share model) to verify programs for you!

29

Verification tools

- Once you have a good share model, and have integrated it into a program logic, you would like to use the logic to prove programs.
- Even better, you'd like to write a program that uses your logic (and thus, the share model) to verify programs for you!
- We have modified the HIP/SLEEK toolchain to verify programs using fractional permissions.

[H. H. Nguyen, C. David, S. Qin, W. N. Chin. Automated verification of shape and size properties via separation logic. VMCAI 2007]

Actually, modifying SLEEK is not the major difficulty...

- SLEEK (and many other toolchains) maintains a stable of backend provers for specific domains.
 - Omega (Presburger arithmetic)
 - MONA (bags, etc.)
 - Redlog (real arithmetic)
 - etc.

Actually, modifying SLEEK is not the major difficulty...

- SLEEK (and many other toolchains) maintains a stable of backend provers for specific domains.
 - Omega (Presburger arithmetic)
 - MONA (bags, etc.)
 - Redlog (real arithmetic)
 - etc.
- We fit into this pattern: our major accomplishment is a backend prover for tree-shares. Our prover should be re-usable (as a library or standalone) in many other toolchains.

 Accordingly, SLEEK's job is to isolate the "sharerelated" subproblems from SL entailments.

- Accordingly, SLEEK's job is to isolate the "sharerelated" subproblems from SL entailments.
- Really simple example:

• from
$$x \xrightarrow{S_1} v \land s_1 = \widehat{\bullet \circ} \land s_2 = \widehat{\circ \bullet} \vdash x \xrightarrow{S_2} v$$

- Accordingly, SLEEK's job is to isolate the "sharerelated" subproblems from SL entailments.
- Really simple example:

• from
$$x \xrightarrow{S_1} v \land s_1 = \widehat{\bullet \circ} \land s_2 = \widehat{\circ \bullet} \vdash x \xrightarrow{S_2} v$$

• we reach
$$s_1 = \widehat{\bullet \circ} \wedge s_2 = \widehat{\circ \bullet} \vdash s_1 = s_2$$
,

- Accordingly, SLEEK's job is to isolate the "sharerelated" subproblems from SL entailments.
- Really simple example:

• from
$$x \xrightarrow{S_1} v \land s_1 = \widehat{\bullet \circ} \land s_2 = \widehat{\circ \bullet} \vdash x \xrightarrow{S_2} v$$

• we reach
$$s_1 = \widehat{\bullet \circ} \wedge s_2 = \widehat{\circ \bullet} \vdash s_1 = s_2$$
,

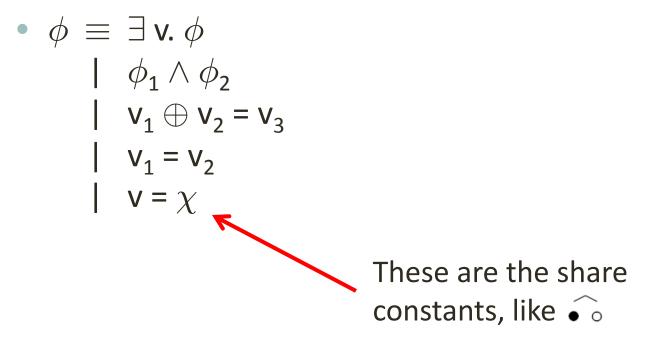
• which is satisfied by a decidable equality check: $\hat{}_{\bullet \circ} \stackrel{?}{=} \hat{}_{\circ \bullet}$ (false).

• SLEEK outputs systems of share equations:

•
$$\phi \equiv \exists \mathbf{v}. \phi$$

 $\mid \phi_1 \land \phi_2$
 $\mid \mathbf{v}_1 \oplus \mathbf{v}_2 = \mathbf{v}_3$
 $\mid \mathbf{v}_1 = \mathbf{v}_2$
 $\mid \mathbf{v} = \chi$

• SLEEK outputs systems of share equations:



• SLEEK outputs systems of share equations:

•
$$\phi \equiv \exists \mathbf{v}. \phi$$

 $\mid \phi_1 \land \phi_2$
 $\mid \mathbf{v}_1 \oplus \mathbf{v}_2 = \mathbf{v}_3$
 $\mid \mathbf{v}_1 = \mathbf{v}_2$
 $\mid \mathbf{v} = \chi$

SLEEK does not need to know much about the
underlying domain of tree-shares to isolate the associated facts

• SLEEK outputs systems of share equations:

•
$$\phi \equiv \exists v. \phi$$

 $\mid \phi_1 \land \phi_2$
 $\mid v_1 \oplus v_2 = v_3$
 $\mid v_1 = v_2$
 $\mid v = \chi$

This output format is a useful modularity boundary we discovered by experimentation

• SLEEK outputs systems of share equations:

•
$$\phi \equiv \exists v. \phi$$

 $\mid \phi_1 \land \phi_2$
 $\mid v_1 \oplus v_2 = v_3$
 $\mid v_1 = v_2$
 $\mid v = \chi$

• SLEEK can then ask two kinds of questions:

• SLEEK outputs systems of share equations:

•
$$\phi \equiv \exists \mathbf{v}. \phi$$

 $\mid \phi_1 \land \phi_2$
 $\mid \mathbf{v}_1 \oplus \mathbf{v}_2 = \mathbf{v}_3$
 $\mid \mathbf{v}_1 = \mathbf{v}_2$
 $\mid \mathbf{v} = \chi$

- SLEEK can then ask two kinds of questions:
 - (SAT) Is a given system satisfiable? (Used to prune unfeasible verification paths)

• SLEEK outputs systems of share equations:

•
$$\phi \equiv \exists \mathbf{v}. \phi$$

 $\mid \phi_1 \land \phi_2$
 $\mid \mathbf{v}_1 \oplus \mathbf{v}_2 = \mathbf{v}_3$
 $\mid \mathbf{v}_1 = \mathbf{v}_2$
 $\mid \mathbf{v} = \chi$

- SLEEK can then ask two kinds of questions:
 - (SAT) Is a given system satisfiable? (Used to prune unfeasible verification paths)
 - (IMPL) Does one system of equations imply another?

Plan of attack

1. Fractional Shares

- 2. Verification Tools
- 3. Our Decision Procedures
- 4. Completeness
- 5. Experimental Results

Why the problem is hard

- Like the rationals, the space of tree-shares is **dense**: that is, given any nonempty share, you can divide it into two nonempty shares
 - Need this to verify divide-and-conquer algorithms!

Why the problem is hard

- Like the rationals, the space of tree-shares is **dense**: that is, given any nonempty share, you can divide it into two nonempty shares
 - Need this to verify divide-and-conquer algorithms!
- Thus, it appears as though finite search is not enough: there could always be a solution to SAT (or a counterexample to IMPL) "just a little deeper"

Why the problem is hard

- Like the rationals, the space of tree-shares is **dense**: that is, given any nonempty share, you can divide it into two nonempty shares
 - Need this to verify divide-and-conquer algorithms!
- Thus, it appears as though finite search is not enough: there could always be a solution to SAT (or a counterexample to IMPL) "just a little deeper"
- Surprisingly, this intution is wrong: we do a shapeguided finite search, armed with some completeness results that say our finite search is sufficient.

• We want to know if the following system is satisfiable:

•
$$x \oplus \overbrace{\bullet \circ \bullet}^{\bullet} = y \land y \oplus z = \overbrace{\bullet \circ}^{\bullet}$$

• We want to know if the following system is satisfiable:

•
$$x \oplus \overbrace{\bullet \circ} \overbrace{\bullet \circ} = y \land y \oplus z = \overbrace{\bullet \circ} \overbrace{\bullet \circ} \bullet$$

• We split into **two** systems...

• We want to know if the following system is satisfiable:

•
$$x \oplus \overbrace{\bullet \circ} \overbrace{\bullet \circ} = y \land y \oplus z = \overbrace{\bullet \circ} \overbrace{\bullet \circ} \bullet$$

• We split into **two** systems...

1.
$$x_{l} \oplus \widehat{\bullet}_{0} = y_{l} \wedge y_{l} \oplus z_{l} = \widehat{\bullet}_{0}$$

2.
$$x_r \oplus = y_r \wedge y_r \oplus z_r = \bullet$$

• We want to know if the following system is satisfiable:

•
$$x \oplus \overbrace{\bullet \circ} \overbrace{\bullet \circ} = y \land y \oplus z = \overbrace{\bullet \circ} \overbrace{\bullet \circ} \bullet$$

• We split into **two** systems...

1.
$$\mathbf{x}_{\mathbf{I}} \oplus \widehat{\mathbf{o}}_{\mathbf{O}} = \mathbf{y}_{\mathbf{I}} \wedge \mathbf{y}_{\mathbf{I}} \oplus \mathbf{z}_{\mathbf{I}} = \widehat{\mathbf{o}}_{\mathbf{O}}$$

2.
$$x_r \oplus = y_r \land y_r \oplus z_r = \bullet$$

Theorem: The original system is satisfiable if and only if both subsystems are satisfiable

• We want to know if the following system is satisfiable:

•
$$x \oplus \overbrace{\bullet \circ} \overbrace{\bullet \circ} = y \land y \oplus z = \overbrace{\bullet \circ} \overbrace{\bullet \circ} \bullet$$

• We split into **two** systems... and then keep splitting...

1.
$$x_{I} \oplus \widehat{\bullet}_{O} = y_{I} \wedge y_{I} \oplus z_{I} = \widehat{\bullet}_{O}$$

2.
$$x_r \oplus \widehat{\bullet \circ} = y_r \land y_r \oplus z_r = \Phi$$

• We want to know if the following system is satisfiable:

• We split into **two** systems... and then keep splitting...

1.
$$x_{I} \oplus \widehat{}_{\circ} = y_{I} \wedge y_{I} \oplus z_{I} = \widehat{}_{\circ}$$

a) $x_{II} \oplus \bullet = y_{II} \wedge y_{II} \oplus z_{II} = \bullet$
b) $x_{Ir} \oplus \circ = y_{Ir} \wedge y_{Ir} \oplus z_{Ir} = \circ$
2. $x_{r} \oplus \widehat{}_{\circ} = y_{r} \wedge y_{r} \oplus z_{r} = \bullet$
a) $x_{rI} \oplus \widehat{}_{\circ} = y_{rI} \wedge y_{rI} \oplus z_{rI} = \bullet$
b) $x_{rr} \oplus \bullet = y_{rr} \wedge y_{rr} \oplus z_{rr} = \bullet$

 We apply a completeness theorem (shown later) that tells us that if there is a solution at all, there must exist a solution at the height of the system

- We apply a completeness theorem (shown later) that tells us that if there is a solution at all, there must exist a solution at the height of the system
- That lets us translate our problem over shares into a Boolean SAT (with existentials) problem

- We apply a completeness theorem (shown later) that tells us that if there is a solution at all, there must exist a solution at the height of the system
- That lets us translate our problem over shares into a Boolean SAT (with existentials) problem

• Example: $x \oplus y = \bullet \quad \rightsquigarrow \quad (x \lor y) \land (\neg x \lor \neg y)$

- We apply a completeness theorem (shown later) that tells us that if there is a solution at all, there must exist a solution at the height of the system
- That lets us translate our problem over shares into a Boolean SAT (with existentials) problem
 - Example: $\mathbf{x} \oplus \mathbf{y} = \bullet \quad \rightsquigarrow \quad (\mathbf{x} \lor \mathbf{y}) \land (\neg \mathbf{x} \lor \neg \mathbf{y})$
- Then we hand this problem to an SMT solver (e.g. Z3)

• The procedure for IMPL is very similar, but we have to decompose across the entailment:

• From
$$x \oplus \overbrace{\bullet \circ \bullet \circ}^{-} = y \vdash \exists z. y \oplus z = \overbrace{\bullet \circ \bullet}^{-}$$

• The procedure for IMPL is very similar, but we have to decompose across the entailment:

• From
$$x \oplus \widehat{}_{\circ \circ} = y \vdash \exists z. y \oplus z = \widehat{}_{\circ \circ}$$

1. $x_1 \oplus \widehat{}_{\circ \circ} = y_1 \vdash \exists z_1. y_1 \oplus z_1 = \widehat{}_{\circ \circ}$
2. $x_r \oplus \widehat{}_{\circ \circ} = y_r \vdash \exists z_r. y_r \oplus z_r = \bullet$

• The procedure for IMPL is very similar, but we have to decompose across the entailment:

• From
$$\mathbf{x} \oplus \widehat{\mathbf{y}} = \mathbf{y} \vdash \exists z. y \oplus z = \mathbf{y}$$

1. $\mathbf{x}_{1} \oplus \widehat{\mathbf{y}} = \mathbf{y}_{1} \vdash \exists z_{1}. y_{1} \oplus z_{1} = \widehat{\mathbf{y}}$
2. $\mathbf{x}_{r} \oplus \widehat{\mathbf{y}} = \mathbf{y}_{r} \vdash \exists z_{r}. y_{r} \oplus z_{r} = \mathbf{0}$

Theorem: The original entailment holds if and only if both subentailments hold

• The procedure for IMPL is very similar, but we have to decompose across the entailment:

• From
$$x \oplus \widehat{}_{\circ \circ} = y \vdash \exists z. y \oplus z = \widehat{}_{\circ \circ}$$

1. $x_1 \oplus \widehat{}_{\circ \circ} = y_1 \vdash \exists z_1. y_1 \oplus z_1 = \widehat{}_{\circ \circ}$
2. $x_r \oplus \widehat{}_{\circ \circ} = y_r \vdash \exists z_r. y_r \oplus z_r = \bullet$

• Once we have reached height zero, we apply a more complicated completeness theorem and then again translate to Boolean SAT for Z3.

Plan of attack

1. Fractional Shares

- 2. Verification Tools
- 3. Our Decision Procedures 🧹
- 4. Completeness
- 5. Experimental Results

- Theorem 1: finite search for SAT
 - Given Σ , $\exists \sigma. \sigma \vDash \Sigma$ iff $\exists \sigma. |\sigma| = |\Sigma| \land \sigma \vDash \Sigma$

• Theorem 1: finite search for SAT

• Given Σ , $\exists \sigma. \sigma \models \Sigma$ iff $\exists \sigma. |\sigma| = |\Sigma| \land \sigma \models \Sigma$ A system of equations

• Theorem 1: finite search for SAT

 $\exists \sigma, \sigma \models \Sigma$ iff $\exists \sigma, |\sigma| = |\Sigma| \land \sigma \models \Sigma$ • Given Σ A system of equations A solution (map from tree variables to tree constants)

• Theorem 1: finite search for SAT

• Given $\Sigma = \sigma, \sigma \models \Sigma$ iff $\exists \sigma, |\sigma| = |\Sigma| \land \sigma \models \Sigma$ A system of equations A solution (map Satisfaction: when variables in

A solution (map from tree variables to tree constants) Satisfaction: when variables in Σ are assigned values from σ , then every equation holds.

iff

• Theorem 1: finite search for SAT

 $f \sigma (\sigma \models \Sigma)$

A system of equations

Given

Height: highest tree-constant contained in σ or Σ .

 $\land \sigma \models \Sigma$

A solution (map from tree variables to tree constants) Satisfaction: when variables in Σ are assigned values from σ , then every equation holds.

 $\exists \sigma (\sigma | = | \Sigma)$

• Theorem 1: finite search for SAT

• Given Σ , $\exists \sigma. \sigma \vDash \Sigma$ iff $\exists \sigma. |\sigma| = |\Sigma| \land \sigma \vDash \Sigma$

• Strategy:

• Theorem 1: finite search for SAT

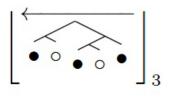
- Given Σ , $\exists \sigma. \sigma \vDash \Sigma$ iff $\exists \sigma. |\sigma| = |\Sigma| \land \sigma \vDash \Sigma$
- Strategy:
 - Definition by example: rounding a tree

- Theorem 1: finite search for SAT
 - Given Σ , $\exists \sigma. \sigma \vDash \Sigma$ iff $\exists \sigma. |\sigma| = |\Sigma| \land \sigma \vDash \Sigma$
- Strategy:
 - Definition by example: rounding a tree
 - Proofs by example: properties of rounding

- Theorem 1: finite search for SAT
 - Given Σ , $\exists \sigma. \sigma \vDash \Sigma$ iff $\exists \sigma. |\sigma| = |\Sigma| \land \sigma \vDash \Sigma$
- Strategy:
 - Definition by example: rounding a tree
 - Proofs by example: properties of rounding
 - Proof sketch of main theorem

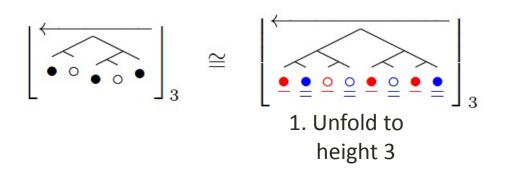
Tree rounding

• Define $[\not \tau]_n$ "left round tree τ to height n" as follows:



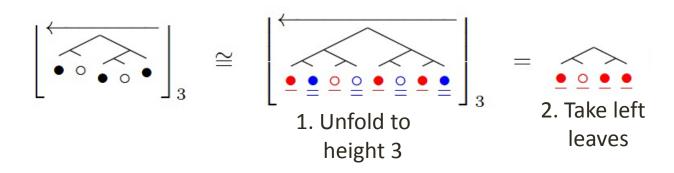
• Define $[\not \tau]_n$ "left round tree τ to height n" as follows:

1. Unfold τ to height n (height starts at 0)



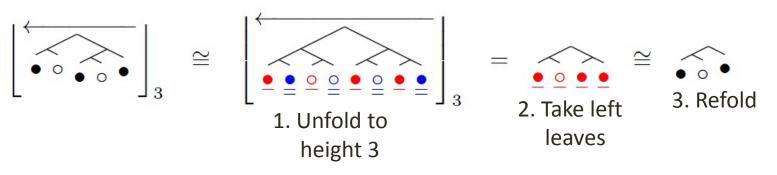
• Define $[\not \tau]_n$ "left round tree τ to height n" as follows:

- 1. Unfold τ to height n (height starts at 0)
- 2. Take every **left** leaf at height n



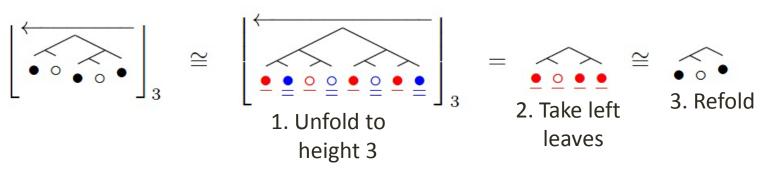
• Define $[\not \tau]_n$ "left round tree τ to height n" as follows:

- 1. Unfold τ to height n (height starts at 0)
- 2. Take every **left** leaf at height n
- 3. Refold as needed

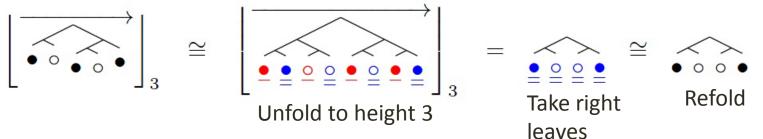


• Define $[\not \tau]_n$ "left round tree τ to height n" as follows:

- 1. Unfold τ to height n (height starts at 0)
- 2. Take every **left** leaf at height n
- 3. Refold as needed

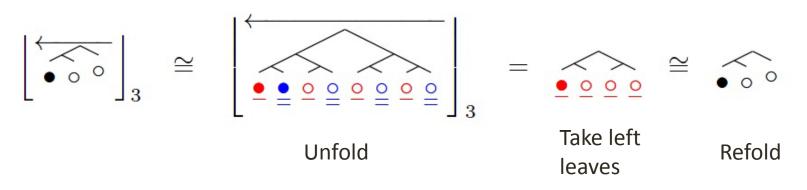


• We can also define "right round" analogously:



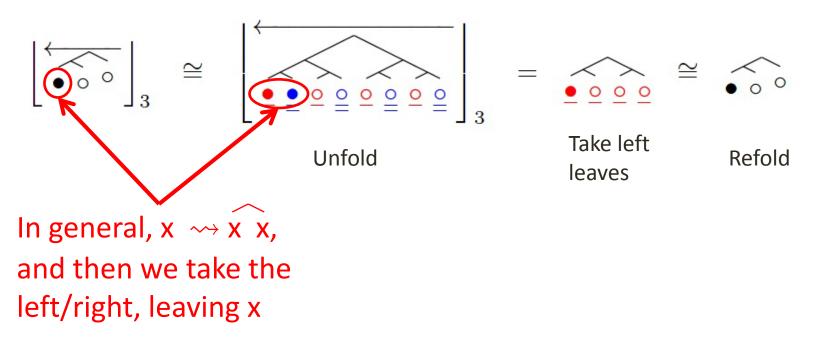
 Rounding a tree of height n to any height strictly greater than n does not change the tree.

- Rounding a tree of height n to any height strictly greater than n does not change the tree.
- "Proof."



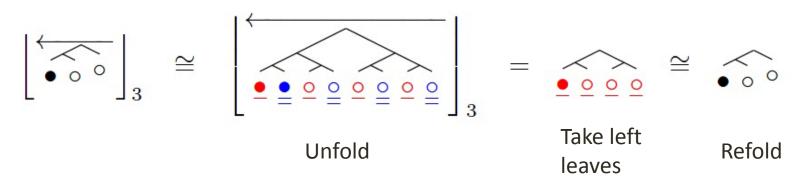
1. Rounding a tree of height n to any height **strictly greater** than n does not change the tree.

Proof."

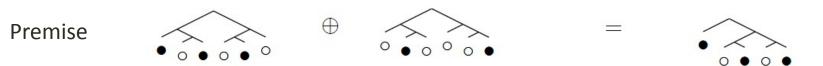


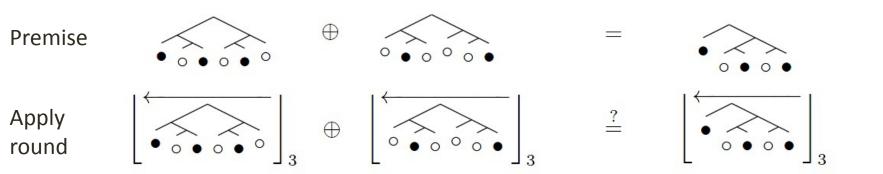
1. Rounding a tree of height n to any height **strictly greater** than n does not change the tree.

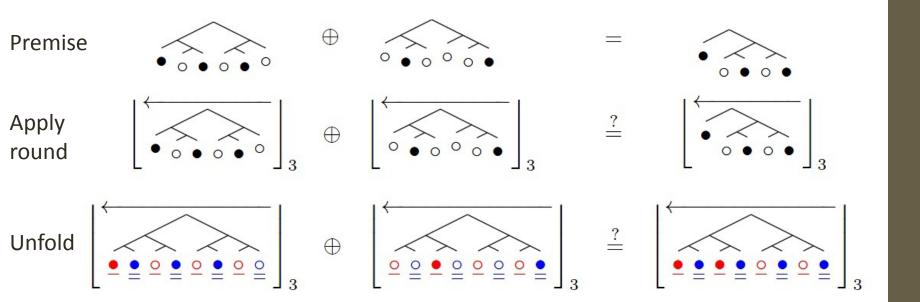
• "Proof."

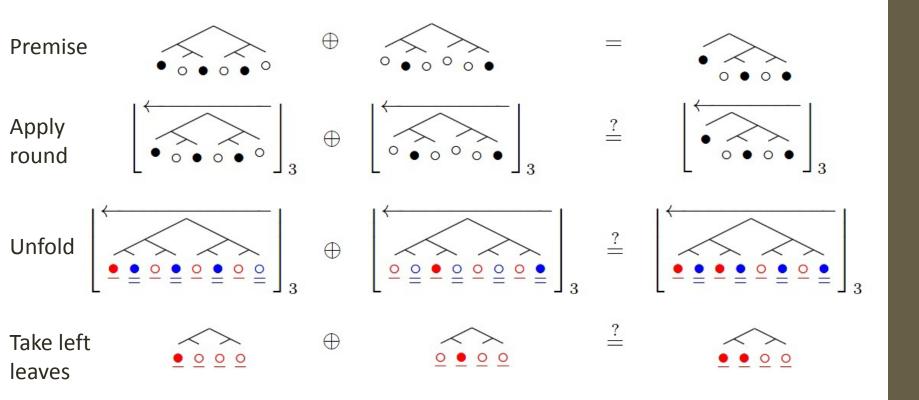


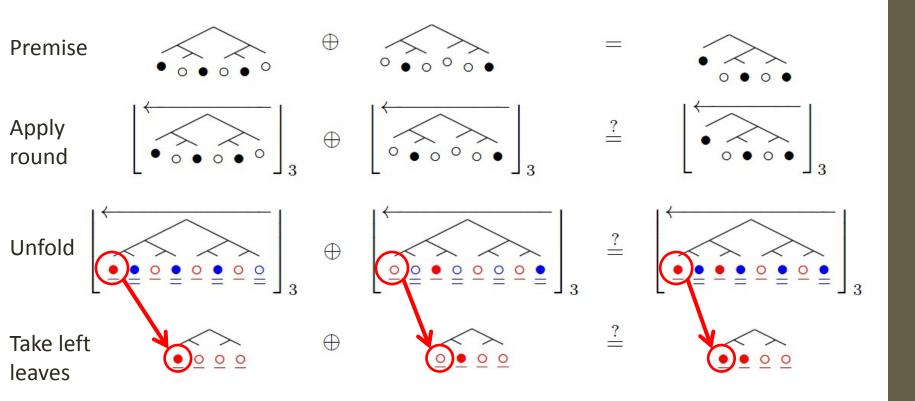
2. If
$$\tau_1 \oplus \tau_2 = \tau_3$$
, then $[\overleftarrow{\tau_1}]_n \oplus [\overleftarrow{\tau_2}]_n = [\overleftarrow{\tau_3}]_n$.



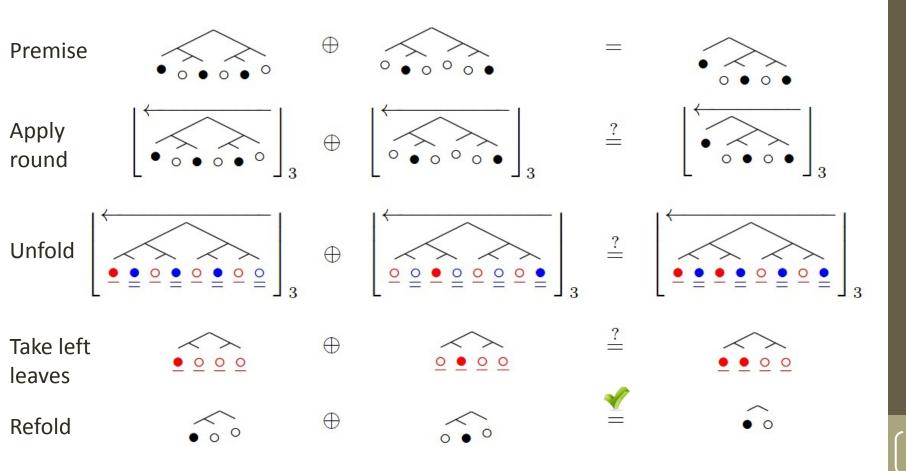








They joined before – joining occurs leafwise – so of course they join after!



Proof sketch: finite SAT

• Theorem 1: finite search for SAT

• Given Σ , $\exists \sigma. \sigma \vDash \Sigma$ iff $\exists \sigma. |\sigma| = |\Sigma| \land \sigma \vDash \Sigma$

• \leftarrow : trivial.

• \rightarrow : Take σ and repeatedly round it until it is of height $|\Sigma|$. Each equation in $|\Sigma|$ will still hold as long as we also round all constants (property 2), and since we are never rounding to height $|\Sigma|$, the constants in Σ are not changing (property 1), i.e., it is the same system of equations.

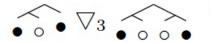
Completeness theorem (IMPL)

- Theorem 2: finite search for IMPL
 - Given Σ and Σ ', $(\forall \sigma. \sigma \vDash \Sigma \rightarrow \sigma \vDash \Sigma')$ iff $(\forall \sigma. |\sigma| = |\Sigma| \rightarrow \sigma \vDash \Sigma \rightarrow \sigma \vDash \Sigma')$

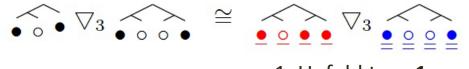
Completeness theorem (IMPL)

- Theorem 2: finite search for IMPL
 - Given Σ and Σ ', $(\forall \sigma. \sigma \vDash \Sigma \rightarrow \sigma \vDash \Sigma')$ iff $(\forall \sigma. |\sigma| = |\Sigma| \rightarrow \sigma \vDash \Sigma \rightarrow \sigma \vDash \Sigma')$
- Strategy:
 - Definition by example: averaging two trees
 - Proofs by example: properties of averaging
 - Proof sketch of main theorem

• Define $\tau_l \bigtriangledown_n \tau_r$ "averaging two trees at height n":



- Define $\tau_l \bigtriangledown_n \tau_r$ "averaging two trees at height n":
 - 1. Unfold τ to height *n*-1

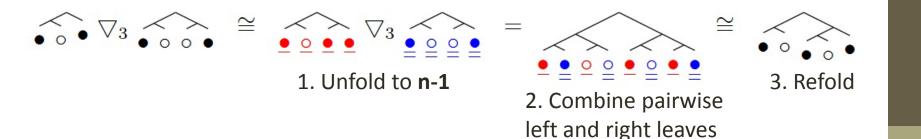


1. Unfold to **n-1**

- Define $\tau_l \bigtriangledown_n \tau_r$ "averaging two trees at height n":
 - 1. Unfold au to height n-1
 - 2. Combine pairwise: left argument become left leaves in result; right argument become right leaves

2. Combine pairwise left and right leaves

- Define $\tau_l \bigtriangledown_n \tau_r$ "averaging two trees at height n":
 - 1. Unfold τ to height *n*-1
 - 2. Combine pairwise: left argument become left leaves in result; right argument become right leaves
 - 3. Refold as needed

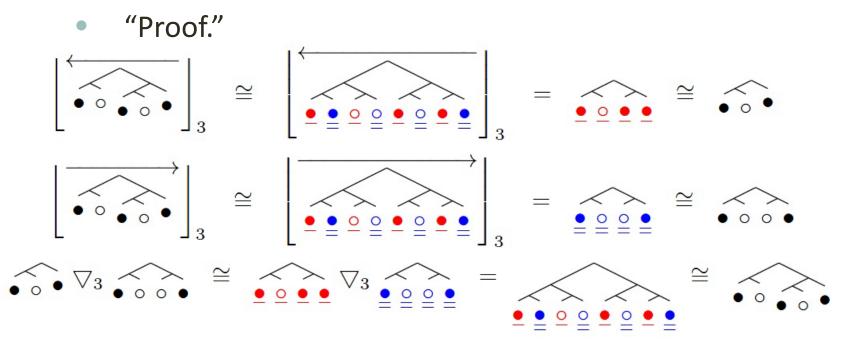


1. Averaging is the inverse of rounding, i.e.,

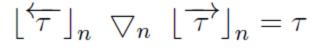
$$\left[\overleftarrow{\tau}\right]_n \ \bigtriangledown_n \ \left[\overrightarrow{\tau}\right]_n = \tau$$

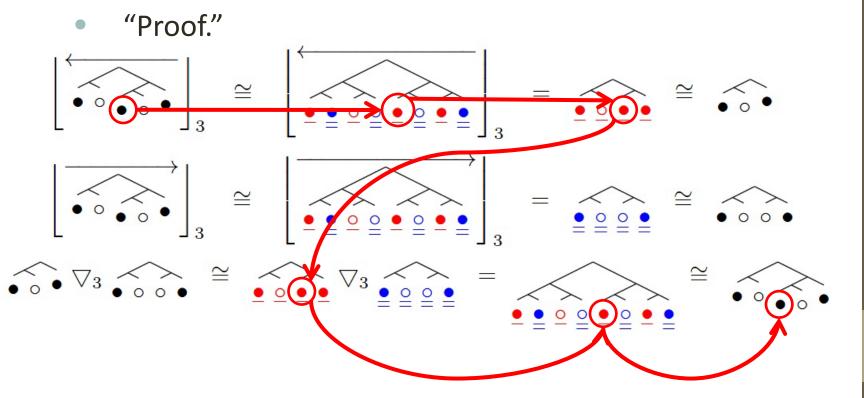
1. Averaging is the inverse of rounding, i.e.,

$$\begin{bmatrix} \overleftarrow{\tau} \end{bmatrix}_n \ \bigtriangledown_n \ \begin{bmatrix} \overrightarrow{\tau} \end{bmatrix}_n = \tau$$

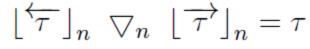


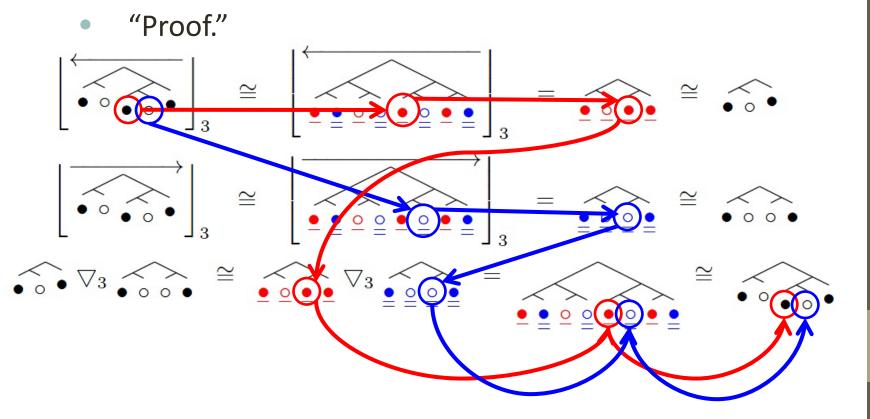
1. Averaging is the inverse of rounding, i.e.,





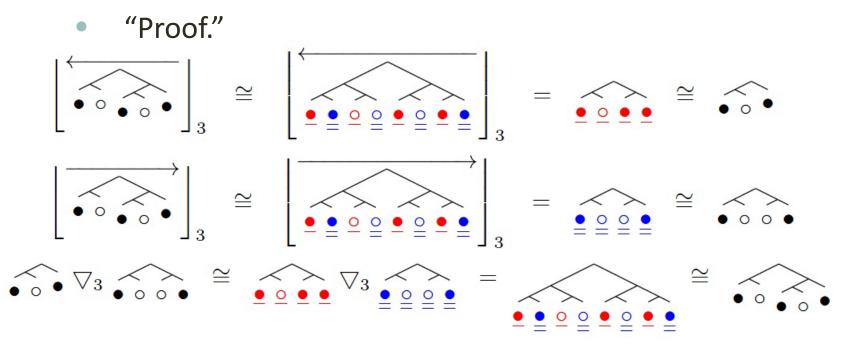
1. Averaging is the inverse of rounding, i.e.,



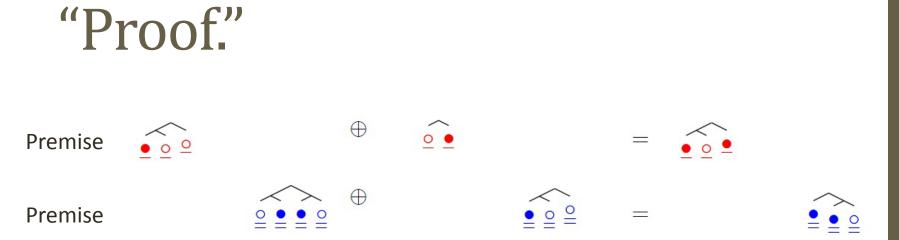


1. Averaging is the inverse of rounding, i.e.,

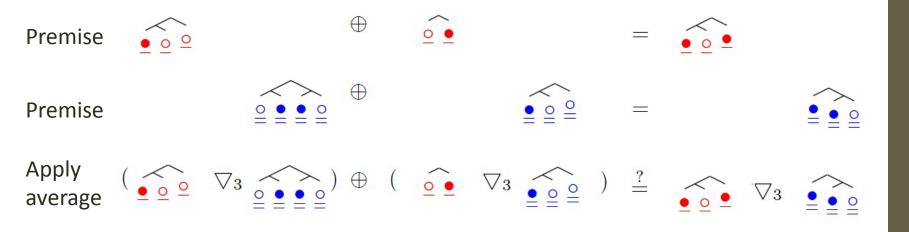
$$\begin{bmatrix} \overleftarrow{\tau} \end{bmatrix}_n \ \bigtriangledown_n \ \begin{bmatrix} \overrightarrow{\tau} \end{bmatrix}_n = \tau$$



2. If $\tau_1 \oplus \tau_2 = \tau_3$ and $\tau'_1 \oplus \tau'_2 = \tau'_3$, then $(\tau_1 \bigtriangledown_n \tau'_1) \oplus (\tau_2 \bigtriangledown_n \tau'_2) = (\tau_3 \bigtriangledown_n \tau'_3).$

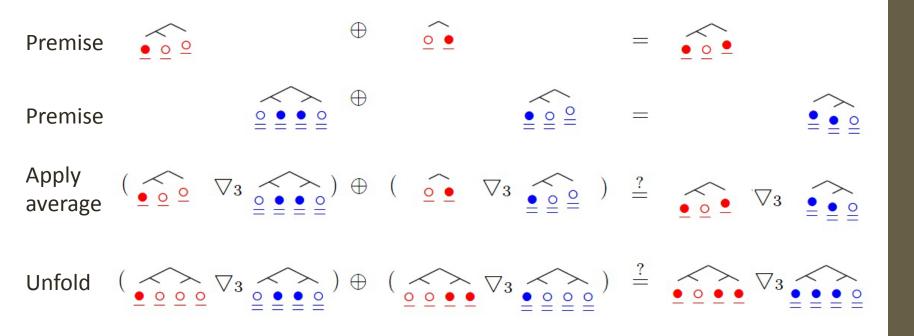


"Proof."

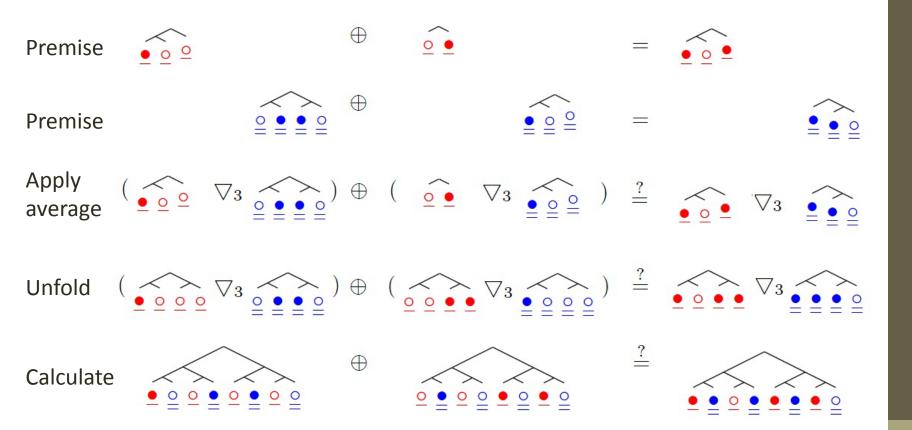


[100]

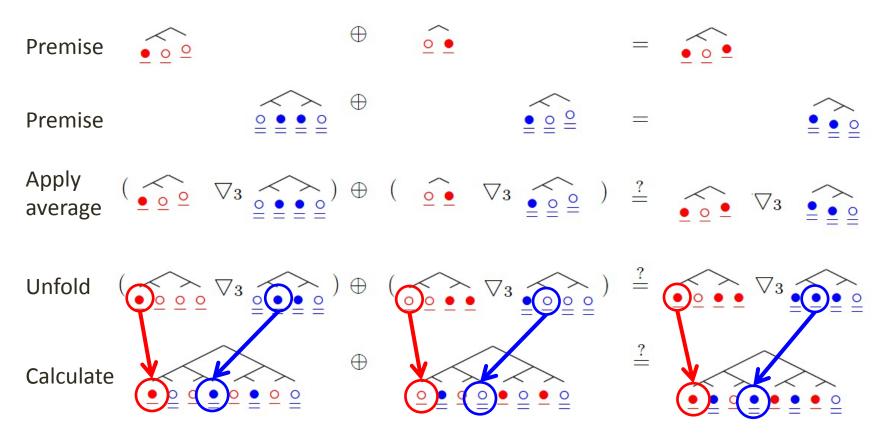
"Proof."



"Proof."

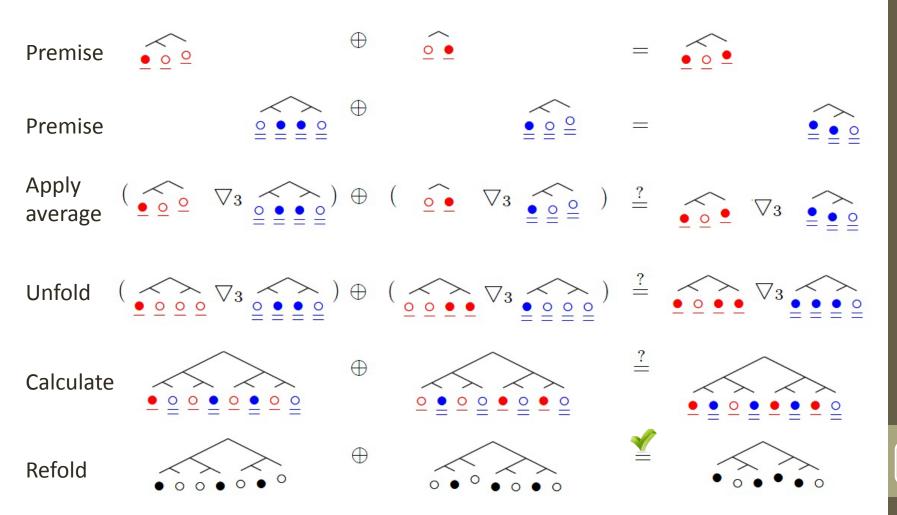


"Proof."



Again, because joining occurs leafwise, if they joined before they join after!

"Proof."



Proof sketch: finite IMPL

- Theorem 2: finite search for IMPL
 - Given Σ and Σ ', $(\forall \sigma. \sigma \vDash \Sigma \rightarrow \sigma \vDash \Sigma')$ iff $(\forall \sigma. |\sigma| = |\Sigma| \rightarrow \sigma \vDash \Sigma \rightarrow \sigma \vDash \Sigma')$
- \rightarrow : trivial.
- \leftarrow : Consider the case when $|\sigma| = |\Sigma| + 1$. By the rounding lemmas, both the left round σ_l and right round σ_r of σ are still solutions for Σ (and have height $|\Sigma|$). Then we apply our hypothesis to learn that σ_l and σ_r are also solutions of Σ' . By averaging property 2, their average is a solution of Σ' , and by averaging property 1, their average is equal to σ .

Plan of attack

1. Fractional Shares

- 2. Verification Tools
- 3. Our Decision Procedures 🧹
- 4. Completeness
- 5. Experimental Results

	SAT					IMPL					
test	call	BndP	ShP	SAT	SAT	call	BndP	ShP	SAT	SAT	
	no.	(ms)	(ms)	no.	(ms)	no.	(ms)	(ms)	no.	(ms)	
barrier-weak	116	0.4	610	73	530	222	2.1	650	42	450	
barrier-strong	116	0.6	660	73	510	222	2.2	788	42	460	
barrier-paper	116	0.7	664	73	510	216	2.2	757	42	460	
barrier-paper-ex	114	0.8	605	71	520	212	2.3	610	40	430	
fractions	63	0.1	0.1	0	0	89	0.1	110	11	110	
fractions1	11	0.1	0.1	0	0	15	0.1	31.3	3	30	
barrier	68	0.1	0.9	0	0	174	1.2	3.9	0	0	
barrier3	36	0.2	0.1	0	0	92	0.2	2.2	0	0	
barrier4	59	0.1	0.7	0	0	140	0.9	2.4	0	0	
read_ops	14	FAIL	210	14	208	27	FAIL	317	9	150	
construct	4	FAIL	70	4	65	17	FAIL	880	17	270	
join_ent	3	FAIL	70	3	30	3	FAIL	50	3	48	

• Old tool is very fast...

	SAT						IMPL						
test	call	BndP	ShP	SAT	SAT	call	BndP	ShP	SAT	SAT			
	no.	(ms)	(ms)	no.	(ms)	no.	(ms)	(ms)	no.	(ms)			
barrier-weak	116	0.4	610	73	530	222	2.1	650	42	450			
barrier-strong	116	0.6	660	73	510	222	2.2	788	42	460			
barrier-paper	116	0.7	664	73	510	216	2.2	757	42	460			
barrier-paper-ex	114	0.8	605	71	520	212	2.3	610	40	430			
fractions	63	0.1	0.1	0	0	89	0.1	110	11	110			
fractions1	11	0.1	0.1	0	0	15	0.1	31.3	3	30			
barrier	68	0.1	0.9	0	0	174	1.2	3.9	0	0			
barrier3	36	0.2	0.1	0	0	92	0.2	2.2	0	0			
barrier4	59	0.1	0.7	0	0	140	0.9	2.4	0	0			
read_ops	14	FAIL	210	14	208	27	FAIL	317	9	150			
construct	4	FAIL	70	4	65	17	FAIL	880	17	270			
join_ent	3	FAIL	70	3	30	3	FAIL	50	3	48			

 But it is incomplete... first two groups of tests were tweaked to avoid the (many) "dark zones" . 108

	· · · · · · · · · · · · · · · · · · ·												
	AT					IMPL							
test	call	BndP	ShP	SAT	SAT	call	BndP	ShP	SAT	SAT			
	no.	(ms)	(ms)	no.	(ms)	no.	(ms)	(ms)	no.	(ms)			
barrier-weak	116	0.4	610	73	530	222	2.1	650	42	450			
barrier-strong	116	0.6	660	73	510	222	2.2	788	42	460			
barrier-paper	116	0.7	664	73	510	216	2.2	757	42	460			
barrier-paper-ex	114	0.8	605	71	520	212	2.3	610	40	430			
fractions	63	0.1	0.1	0	0	89	0.1	110	11	110			
fractions1	11	0.1	0.1	0	0	15	0.1	31.3	3	30			
barrier	68	0.1	0.9	0	0	174	1.2	3.9	0	0			
barrier3	36	0.2	0.1	0	0	92	0.2	2.2	0	0			
barrier4	59	0.1	0.7	0	0	140	0.9	2.4	0	0			
read_ops	14	FAIL	210	14	208	27	FAIL	317	9	150			
construct	4	FAIL	70	4	65	17	FAIL	880	17	270			
join_ent	3	FAIL	70	3	30	3	FAIL	50	3	48			

 New tool is slower, although the rest of HIP/SLEEK takes more 3,000ms on the first four tests

			C A T					IMDI		
			SAT					IMPL		
test	call	BndP	ShP	SAT	SAT	call	BndP	ShP	SAT	SAT
	no.	(ms)	(ms)	no.	(ms)	no.	(ms)	(ms)	no.	(ms)
barrier-weak	116	0.4	610	73	530	222	2.1	650	42	450
barrier-strong	116	0.6	660	73	510	222	2.2	788	42	460
barrier-paper	116	0.7	664	73	510	216	2.2	757	42	460
barrier-paper-ex	114	0.8	605	71	520	212	2.3	610	40	430
fractions	63	0.1	0.1	0	0	89	0.1	110	11	110
fractions1	11	0.1	0.1	0	0	15	0.1	31.3	3	30
barrier	68	0.1	0.9	0	0	174	1.2	3.9	0	0
barrier3	36	0.2	0.1	0	0	92	0.2	2.2	0	0
barrier4	59	0.1	0.7	0	0	140	0.9	2.4	0	0
read_ops	14	FAIL	210	14	208	27	FAIL	317	9	150
construct	4	FAIL	70	4	65	17	FAIL	880	17	270
join_ent	3	FAIL	70	3	30	3	FAIL	50	3	48

Most of the time is spent in the SMT solver (and communication/process overhead)

	SAT						IMPL						
test	call	BndP	ShP	SAT	SAT	call	BndP	ShP	SAT	SAT			
	no.	(ms)	(ms)	no.	(ms)	no.	(ms)	(ms)	no.	(ms)			
barrier-weak	116	0.4	610	73	530	222	2.1	650	42	450			
barrier-strong	116	0.6	660	73	510	222	2.2	788	42	460			
barrier-paper	116	0.7	664	73	510	216	2.2	757	42	460			
barrier-paper-ex	114	0.8	605	71	520	212	2.3	610	40	430			
fractions	63	0.1	0.1	0	0	89	0.1	110	11	110			
fractions1	11	0.1	0.1	0	0	15	0.1	31.3	3	30			
barrier	68	0.1	0.9	0	0	174	1.2	3.9	0	0			
barrier3	36	0.2	0.1	0	0	92	0.2	2.2	0	0			
barrier4	59	0.1	07	0	0	140	0.9	2.4	0	0			
read_ops	14	FAIL	210	14	208	27	FAIL	317	9	150			
construct	4	FAIL	70	4	65	17	FAIL	880	17	270			
join_ent	3	FAIL	70	3	30	3	FAIL	50	3	48			

• And, the new procedures are complete!

 It's actually really hard to develop tests to aggressive exercise the share procedures – in lots of code it will happen, but finding small examples is tricky.

- It's actually really hard to develop tests to aggressive exercise the share procedures – in lots of code it will happen, but finding small examples is tricky.
- We developed a standalone benchmark of 53 SAT and 50 IMPLY queries to stress the solver.

- It's actually really hard to develop tests to aggressive exercise the share procedures – in lots of code it will happen, but finding small examples is tricky.
- We developed a standalone benchmark of 53 SAT and 50 IMPLY queries to stress the solver.
- Our new solver solved the entire suite in 1.4s.

- It's actually really hard to develop tests to aggressive exercise the share procedures – in lots of code it will happen, but finding small examples is tricky.
- We developed a standalone benchmark of 53 SAT and 50 IMPLY queries to stress the solver.
- Our new solver solved the entire suite in 1.4s.
- Our old solver could solve fewer than 10%.

