
Decision Procedures over 
Sophisticated Fractional Permissions 

Le Xuan Bach, Cristian Gherghina, Aquinas Hobor 
National University of Singapore 

1 



What are Fractional Permissions? 
• Accounting for shared control of a resource 

 

2 



What are Fractional Permissions? 
• Accounting for shared control of a resource 

 
• Resource: memory cell, file on disk, network 

connection… 
 

3 



What are Fractional Permissions? 
• Accounting for shared control of a resource 

 
• Resource: memory cell, file on disk, network 

connection… 
 
 

• Shared control: usually between two or more 
parallel computations 

4 



Accounting 
• How we keep track of who owns how much 

• e.g., a share is a rational in [0, 1] 

5 



Accounting 
• How we keep track of who owns how much 

• e.g., a share is a rational in [0, 1] 
• And how ownership gets transferred 

• we combine shares using partial addition, i.e. 
0.25 + 0.25 = 0.5      but    0.75 + 0.75 is undefined 
 

6 



Accounting 
• How we keep track of who owns how much 

• e.g., a share is a rational in [0, 1] 
• And how ownership gets transferred 

• we combine shares using partial addition, i.e. 
0.25 + 0.25 = 0.5      but    0.75 + 0.75 is undefined 
 

• Not the same as policy, which maps shares to behaviors:  
• {1} : can write to memory cell 
• (0,1] : can read from memory cell 
• {0} : cannot use memory cell 7 



Tree shares 
• Rationals do not satisfy exactly the “right” axioms 

• See Parkinson’s thesis or our APLAS 09 paper for why. 
 
 
 

8 

[R. Dockins, A. Hobor, A. W. Appel.  A Fresh Look at Separation Algebras and Share Accounting, APLAS 2009] 



Tree shares 
• Rationals do not satisfy exactly the “right” axioms 

• See Parkinson’s thesis or our APLAS 09 paper for why. 
 

• Solution: use Boolean binary trees for shares 
• Full share:        ² 
 
 

9 

[R. Dockins, A. Hobor, A. W. Appel.  A Fresh Look at Separation Algebras and Share Accounting, APLAS 2009] 



Tree shares 
• Rationals do not satisfy exactly the “right” axioms 

• See Parkinson’s thesis or our APLAS 09 paper for why. 
 

• Solution: use Boolean binary trees for shares 
• Full share:        ² 
• Empty share:        ± 
 
 

10 

[R. Dockins, A. Hobor, A. W. Appel.  A Fresh Look at Separation Algebras and Share Accounting, APLAS 2009] 



Tree shares 
• Rationals do not satisfy exactly the “right” axioms 

• See Parkinson’s thesis or our APLAS 09 paper for why. 
 

• Solution: use Boolean binary trees for shares 
• Full share:        ² 
• Empty share:        ± 
• Left half: 

 

• Right half: 
 

 

 
 

11 

[R. Dockins, A. Hobor, A. W. Appel.  A Fresh Look at Separation Algebras and Share Accounting, APLAS 2009] 



Tree shares 
• Rationals do not satisfy exactly the “right” axioms 

• See Parkinson’s thesis or our APLAS 09 paper for why. 
 

• Solution: use Boolean binary trees for shares 
• Full share:        ² 
• Empty share:        ± 
• Left half: 

 

• Right half: 
 

 

 
 

12 

[R. Dockins, A. Hobor, A. W. Appel.  A Fresh Look at Separation Algebras and Share Accounting, APLAS 2009] 

These are not the  
same half share! 



Tree shares 
• Rationals do not satisfy exactly the “right” axioms 

• See Parkinson’s thesis or our APLAS 09 paper for why. 
 

• Solution: use Boolean binary trees for shares 
• Full share:        ² 
• Empty share:        ± 
• Left half: 

 

• Right half: 
 

• First quarter: 
 

• etc. 
 

13 

[R. Dockins, A. Hobor, A. W. Appel.  A Fresh Look at Separation Algebras and Share Accounting, APLAS 2009] 



Canonical Forms 
• Note we wrote the first quarter as           instead of 

   

              .  This is deliberate; the second is not in 
 

canonical form, which ensures unique representations. 
 

14 

[R. Dockins, A. Hobor, A. W. Appel.  A Fresh Look at Separation Algebras and Share Accounting, APLAS 2009] 



Canonical Forms 
• Note we wrote the first quarter as           instead of 

   

              .  This is deliberate; the second is not in 
 

canonical form, which ensures unique representations. 
 

• Define a reflexive, transitive relation      from: 
 
 
 

15 

[R. Dockins, A. Hobor, A. W. Appel.  A Fresh Look at Separation Algebras and Share Accounting, APLAS 2009] 



Canonical Forms 
• Note we wrote the first quarter as           instead of 

   

              .  This is deliberate; the second is not in 
 

canonical form, which ensures unique representations. 
 

• Define a reflexive, transitive relation      from: 
 
 
 

• A tree is in canonical form when it is in the most 
compact representation under     . 
 
 

16 

[R. Dockins, A. Hobor, A. W. Appel.  A Fresh Look at Separation Algebras and Share Accounting, APLAS 2009] 



Addition 
• To add trees (a partial operation), we 

17 

[R. Dockins, A. Hobor, A. W. Appel.  A Fresh Look at Separation Algebras and Share Accounting, APLAS 2009] 



Addition 
• To add trees (a partial operation), we 

1. Expand them using ≅ to the same shape 

18 

[R. Dockins, A. Hobor, A. W. Appel.  A Fresh Look at Separation Algebras and Share Accounting, APLAS 2009] 



Addition 
• To add trees (a partial operation), we 

1. Expand them using ≅ to the same shape 
2. Join leafwise (± © x = x   and    x © ± = x) 

19 

² © ± = ² 

[R. Dockins, A. Hobor, A. W. Appel.  A Fresh Look at Separation Algebras and Share Accounting, APLAS 2009] 



Addition 
• To add trees (a partial operation), we 

1. Expand them using ≅ to the same shape 
2. Join leafwise (± © x = x   and    x © ± = x) 

20 

² © ± = ² 

[R. Dockins, A. Hobor, A. W. Appel.  A Fresh Look at Separation Algebras and Share Accounting, APLAS 2009] 

Emphasis: ² © ² is undefined! 



Addition 
• To add trees (a partial operation), we 

1. Expand them using ≅ to the same shape 
2. Join leafwise (± © x = x   and    x © ± = x) 
3. Re-canonicalize 

 
 
 

21 

[R. Dockins, A. Hobor, A. W. Appel.  A Fresh Look at Separation Algebras and Share Accounting, APLAS 2009] 



Using shares in separation logic 
• Update “maps-to” to take a tree-share: 

• e  e’ 
• the current heap has a single cell e, whose value is 

e’, and which is owned with tree-fraction ¼ 

 
• (5  7) * (8  5) * (5  7)  = 
 
                                                      

22 

¼ 



Using shares in separation logic 
• Update “maps-to” to take a tree-share: 

• e  e’ 
• the current heap has a single cell e, whose value is 

e’, and which is owned with tree-fraction ¼ 

 
• (5  7) * (8  5) * (5  7)  =   False 
 
 
 
                                                      

23 

¼ 



Using shares in separation logic 

7 5: 7 7 5: 7 7 8: 5 

24 

¼ 

These shares cannot be added together! 

• Update “maps-to” to take a tree-share: 
• e  e’ 
• the current heap has a single cell e, whose value is 

e’, and which is owned with tree-fraction ¼ 

 
• (5  7) * (8  5) * (5  7)  =   False 
 
                *                *                  =  False  
 
                                                      



Using shares in separation logic 

7 5: 7 7 5: 7 7 8: 5 

25 

¼ 

These shares are  
compatible 

• Update “maps-to” to take a tree-share: 
• e  e’ 
• the current heap has a single cell e, whose value is 

e’, and which is owned with tree-fraction ¼ 

 
• (5  7) * (8  5) * (5  7)  = 
 
                *                *                  =                  
 
                                                      



Using shares in separation logic 
• Update “maps-to” to take a tree-share: 

• e  e’ 
• the current heap has a single cell e, whose value is 

e’, and which is owned with tree-fraction ¼ 

 
• (5  7) * (8  5) * (5  7)  = (5  7) * (8  5)  
 
                *                *                  =                *  
 
                                                     = 

7 5: 7 7 5: 7 7 5: 7 7 8: 5 7 8: 5 

7 5: 7 

7 8: 5 26 

¼ 



Plan of attack 
1. Fractional Shares 

 
2. Verification Tools 

 
3. Our Decision Procedures 

 
4. Completeness 

 
5. Experimental Results 

27 



Verification tools 
• Once you have a good share model, and have 

integrated it into a program logic, you would like to 
use the logic to prove programs. 
 

28 

[H. H. Nguyen, C. David, S. Qin, W. N. Chin. Automated verification of shape and size properties via separation logic. VMCAI 2007] 



Verification tools 
• Once you have a good share model, and have 

integrated it into a program logic, you would like to 
use the logic to prove programs. 
 

• Even better, you’d like to write a program that uses 
your logic (and thus, the share model) to verify 
programs for you! 
 

29 

[H. H. Nguyen, C. David, S. Qin, W. N. Chin. Automated verification of shape and size properties via separation logic. VMCAI 2007] 



Verification tools 
• Once you have a good share model, and have 

integrated it into a program logic, you would like to 
use the logic to prove programs. 
 

• Even better, you’d like to write a program that uses 
your logic (and thus, the share model) to verify 
programs for you! 
 

• We have modified the HIP/SLEEK toolchain to verify 
programs using fractional permissions. 30 

[H. H. Nguyen, C. David, S. Qin, W. N. Chin. Automated verification of shape and size properties via separation logic. VMCAI 2007] 



Actually, modifying SLEEK is 
not the major difficulty… 
• SLEEK (and many other toolchains) maintains a 

stable of backend provers for specific domains. 
• Omega (Presburger arithmetic) 
• MONA (bags, etc.) 
• Redlog (real arithmetic) 
• etc. 
 

 

31 

[A. Hobor, C. Gherghina. Barriers in  concurrent separation logic: now with tool support! LMCS Vol. 8, 2011] 



Actually, modifying SLEEK is 
not the major difficulty… 
• SLEEK (and many other toolchains) maintains a 

stable of backend provers for specific domains. 
• Omega (Presburger arithmetic) 
• MONA (bags, etc.) 
• Redlog (real arithmetic) 
• etc. 
 

• We fit into this pattern: our major accomplishment 
is a backend prover for tree-shares.  Our prover 
should be re-usable (as a library or standalone) in 
many other toolchains. 

 

32 

[A. Hobor, C. Gherghina. Barriers in  concurrent separation logic: now with tool support! LMCS Vol. 8, 2011] 



SLEEK’s job 
• Accordingly, SLEEK’s job is to isolate the “share-

related” subproblems from SL entailments. 
 
 
 

 

33 

[A. Hobor, C. Gherghina. Barriers in  concurrent separation logic: now with tool support! LMCS Vol. 8, 2011] 



SLEEK’s job 
• Accordingly, SLEEK’s job is to isolate the “share-

related” subproblems from SL entailments. 
 

• Really simple example: 
 
• from  x  v Æ s1 =       Æ s2  =            `    x  v 
 
 

 
34 

[A. Hobor, C. Gherghina. Barriers in  concurrent separation logic: now with tool support! LMCS Vol. 8, 2011] 

s1 s2 



SLEEK’s job 
• Accordingly, SLEEK’s job is to isolate the “share-

related” subproblems from SL entailments. 
 

• Really simple example: 
 
• from  x  v Æ s1 =       Æ s2  =            `    x  v 

 
• we reach s1 =         Æ s2 =          `   s1 = s2, 

 
 
 

 

35 

[A. Hobor, C. Gherghina. Barriers in  concurrent separation logic: now with tool support! LMCS Vol. 8, 2011] 

s1 s2 



SLEEK’s job 
• Accordingly, SLEEK’s job is to isolate the “share-

related” subproblems from SL entailments. 
 

• Really simple example: 
 
• from  x  v Æ s1 =       Æ s2  =            `    x  v 

 
• we reach s1 =         Æ s2 =          `   s1 = s2, 

 
• which is satisfied by a decidable equality check: 

       =        (false). 

 

36 

[A. Hobor, C. Gherghina. Barriers in  concurrent separation logic: now with tool support! LMCS Vol. 8, 2011] 

s1 s2 

? 



Formal statement of problem 
• SLEEK outputs systems of share equations: 

•  Á  ´  9 v. Á   
      |   Á1 Æ Á2  
      |   v1 © v2 = v3  
      |   v1 = v2   
      |   v = Â 

 

37 



Formal statement of problem 
• SLEEK outputs systems of share equations: 

•  Á  ´  9 v. Á   
      |   Á1 Æ Á2  
      |   v1 © v2 = v3  
      |   v1 = v2   
      |   v = Â 

 

38 

These are the share  
constants, like  



Formal statement of problem 
• SLEEK outputs systems of share equations: 

•  Á  ´  9 v. Á   
      |   Á1 Æ Á2  
      |   v1 © v2 = v3  
      |   v1 = v2   
      |   v = Â 

 

39 

SLEEK does not need to 
know much about the 
underlying domain of 
tree-shares to isolate the 
associated facts 



Formal statement of problem 
• SLEEK outputs systems of share equations: 

•  Á  ´  9 v. Á   
      |   Á1 Æ Á2  
      |   v1 © v2 = v3  
      |   v1 = v2   
      |   v = Â 

 

40 

This output format is a 
useful modularity 
boundary we discovered 
by experimentation 



Formal statement of problem 
• SLEEK outputs systems of share equations: 

•  Á  ´  9 v. Á   
      |   Á1 Æ Á2  
      |   v1 © v2 = v3  
      |   v1 = v2   
      |   v = Â 

 
• SLEEK can then ask two kinds of questions: 

 
41 



Formal statement of problem 
• SLEEK outputs systems of share equations: 

•  Á  ´  9 v. Á   
      |   Á1 Æ Á2  
      |   v1 © v2 = v3  
      |   v1 = v2   
      |   v = Â 

 
• SLEEK can then ask two kinds of questions: 

• (SAT) Is a given system satisfiable?  (Used to prune 
unfeasible verification paths) 42 



Formal statement of problem 
• SLEEK outputs systems of share equations: 

•  Á  ´  9 v. Á   
      |   Á1 Æ Á2  
      |   v1 © v2 = v3  
      |   v1 = v2   
      |   v = Â 

 
• SLEEK can then ask two kinds of questions: 

• (SAT) Is a given system satisfiable?  (Used to prune 
unfeasible verification paths) 

• (IMPL) Does one system of equations imply another? 
43 



Plan of attack 
1. Fractional Shares 

 
2. Verification Tools 

 
3. Our Decision Procedures 

 
4. Completeness 

 
5. Experimental Results 

44 



Why the problem is hard 
• Like the rationals, the space of tree-shares is dense: 

that is, given any nonempty share, you can divide it 
into two nonempty shares 
• Need this to verify divide-and-conquer algorithms! 
 
 
 
 
 
 

  
 

45 



Why the problem is hard 
• Like the rationals, the space of tree-shares is dense: 

that is, given any nonempty share, you can divide it 
into two nonempty shares 
• Need this to verify divide-and-conquer algorithms! 
 

• Thus, it appears as though finite search is not enough: 
there could always be a solution to SAT (or a 
counterexample to IMPL) “just a little deeper” 
 
 
 

  
46 



Why the problem is hard 
• Like the rationals, the space of tree-shares is dense: 

that is, given any nonempty share, you can divide it 
into two nonempty shares 
• Need this to verify divide-and-conquer algorithms! 
 

• Thus, it appears as though finite search is not enough: 
there could always be a solution to SAT (or a 
counterexample to IMPL) “just a little deeper” 
 

• Surprisingly, this intution is wrong: we do a shape-
guided finite search, armed with some completeness 
results that say our finite search is sufficient. 
 
 

47 



Decomposition (SAT) 
• We want to know if the following system is satisfiable: 

 
• x  ©                      =  y     Æ     y  ©  z =   

 

48 



Decomposition (SAT) 
• We want to know if the following system is satisfiable: 

 
• x  ©                      =  y     Æ     y  ©  z =   

 

• We split into two systems… 
 

49 



Decomposition (SAT) 
• We want to know if the following system is satisfiable: 

 
• x  ©                      =  y     Æ     y  ©  z =   

 

• We split into two systems… 
 
1. xl  ©           = yl      Æ      yl © zl  =  

 
 

2. xr  ©             = yr    Æ     yr © zr = ² 

50 



Decomposition (SAT) 
• We want to know if the following system is satisfiable: 

 
• x  ©                      =  y     Æ     y  ©  z =   

 

• We split into two systems… 
 
1. xl  ©           = yl      Æ      yl © zl  =  

 
 

2. xr  ©             = yr    Æ     yr © zr = ² 

51 Theorem: The original system is satisfiable if  
and only if both subsystems are satisfiable 



Decomposition (SAT) 
• We want to know if the following system is satisfiable: 

 
• x  ©                      =  y     Æ     y  ©  z =   

 

• We split into two systems… and then keep splitting… 
 
1. xl  ©           = yl      Æ      yl © zl  =  

 
 

2. xr  ©             = yr    Æ     yr © zr = ² 

52 



Decomposition (SAT) 
• We want to know if the following system is satisfiable: 

 
• x  ©                      =  y     Æ     y  ©  z =   

 

• We split into two systems… and then keep splitting… 
 
1. xl  ©           = yl      Æ      yl © zl  =  

a) xll © ² = yll    Æ    yll © zll = ² 
b) xlr © ± = ylr    Æ   ylr © zlr = ± 

2. xr  ©             = yr    Æ     yr © zr = ² 
 

a) xrl ©      = yrl    Æ  yrl © zrl = ² 
b) xrr © ² = yrr    Æ   yrr © zrr = ² 
 

53 



Once every constant is ² or ±… 
• We apply a completeness theorem (shown later) that 

tells us that if there is a solution at all, there must 
exist a solution at the height of the system 
 

54 



Once every constant is ² or ±… 
• We apply a completeness theorem (shown later) that 

tells us that if there is a solution at all, there must 
exist a solution at the height of the system 
 

• That lets us translate our problem over shares into a 
Boolean SAT (with existentials) problem 
 

55 



Once every constant is ² or ±… 
• We apply a completeness theorem (shown later) that 

tells us that if there is a solution at all, there must 
exist a solution at the height of the system 
 

• That lets us translate our problem over shares into a 
Boolean SAT (with existentials) problem 
• Example: x © y = ²    Ã    (x Ç y) Æ (:x Ç :y) 

 

56 



Once every constant is ² or ±… 
• We apply a completeness theorem (shown later) that 

tells us that if there is a solution at all, there must 
exist a solution at the height of the system 
 

• That lets us translate our problem over shares into a 
Boolean SAT (with existentials) problem 
• Example: x © y = ²    Ã    (x Ç y) Æ (:x Ç :y) 

 
• Then we hand this problem to an SMT solver (e.g. Z3) 

57 



Decomposition (IMPL) 
• The procedure for IMPL is very similar, but we have 

to decompose across the entailment: 
 
• From   x  ©                   =  y     `    9 z.  y  ©  z =   

 

 
 

58 



Decomposition (IMPL) 
• The procedure for IMPL is very similar, but we have 

to decompose across the entailment: 
 
• From   x  ©                   =  y     `    9 z.  y  ©  z =   

 

1. xl  ©         = yl      `   9 zl.  yl © zl  =  
 

2. xr  ©             = yr    `    9 zr. yr © zr = ² 
 

 
59 



Decomposition (IMPL) 
• The procedure for IMPL is very similar, but we have 

to decompose across the entailment: 
 
• From   x  ©                   =  y     `    9 z.  y  ©  z =   

 

1. xl  ©         = yl      `   9 zl.  yl © zl  =  
 

2. xr  ©             = yr    `    9 zr. yr © zr = ² 
 

 
60 Theorem: The original entailment holds if  

and only if both subentailments hold 



Decomposition (IMPL) 
• The procedure for IMPL is very similar, but we have 

to decompose across the entailment: 
 
• From   x  ©                   =  y     `    9 z.  y  ©  z =   

 

1. xl  ©         = yl      `   9 zl.  yl © zl  =  
 

2. xr  ©             = yr    `    9 zr. yr © zr = ² 
 

• Once we have reached height zero, we apply a 
more complicated completeness theorem and 
then again translate to Boolean SAT for Z3.  

 

61 



Plan of attack 
1. Fractional Shares 

 
2. Verification Tools 

 
3. Our Decision Procedures 

 
4. Completeness 

 
5. Experimental Results 

62 



Completeness theorem (SAT) 
• Theorem 1: finite search for SAT 

• Given §,   9¾. ¾ ² §    iff    9¾. |¾|=|§|  Æ  ¾ ² § 

63 



Completeness theorem (SAT) 
• Theorem 1: finite search for SAT 

• Given §,   9¾. ¾ ² §    iff    9¾. |¾|=|§|  Æ  ¾ ² § 

64 

A system of  
equations 



Completeness theorem (SAT) 
• Theorem 1: finite search for SAT 

• Given §,   9¾. ¾ ² §    iff    9¾. |¾|=|§|  Æ  ¾ ² § 

65 

A system of  
equations 

A solution (map 
from tree variables 
to tree constants) 



Completeness theorem (SAT) 
• Theorem 1: finite search for SAT 

• Given §,   9¾. ¾ ² §    iff    9¾. |¾|=|§|  Æ  ¾ ² § 

66 

A system of  
equations 

Satisfaction: when variables in 
§ are assigned values  from ¾, 
then every equation holds. 

A solution (map 
from tree variables 
to tree constants) 



Completeness theorem (SAT) 
• Theorem 1: finite search for SAT 

• Given §,   9¾. ¾ ² §    iff    9¾. |¾|=|§|  Æ  ¾ ² § 

67 

A system of  
equations 

A solution (map 
from tree variables 
to tree constants) 

Satisfaction: when variables in 
§ are assigned values  from ¾, 
then every equation holds. 

Height: highest 
tree-constant 
contained in ¾ or §. 



Completeness theorem (SAT) 
• Theorem 1: finite search for SAT 

• Given §,   9¾. ¾ ² §    iff    9¾. |¾|=|§|  Æ  ¾ ² §  

 

• Strategy: 
 
 

68 



Completeness theorem (SAT) 
• Theorem 1: finite search for SAT 

• Given §,   9¾. ¾ ² §    iff    9¾. |¾|=|§|  Æ  ¾ ² §  

 

• Strategy: 
• Definition by example: rounding a tree 

 
 

69 



Completeness theorem (SAT) 
• Theorem 1: finite search for SAT 

• Given §,   9¾. ¾ ² §    iff    9¾. |¾|=|§|  Æ  ¾ ² §  

 

• Strategy: 
• Definition by example: rounding a tree 

 
• Proofs by example: properties of rounding 

 
 
 70 



Completeness theorem (SAT) 
• Theorem 1: finite search for SAT 

• Given §,   9¾. ¾ ² §    iff    9¾. |¾|=|§|  Æ  ¾ ² §  

 

• Strategy: 
• Definition by example: rounding a tree 

 
• Proofs by example: properties of rounding 

 
• Proof sketch of main theorem 

 71 



Tree rounding 

72 

• Define          “left round tree ¿ to height n” as follows: 



Tree rounding 

73 

• Define          “left round tree ¿ to height n” as follows: 
1. Unfold ¿ to height n (height starts at 0) 

1. Unfold to 
     height 3 

3. Refold 2. Take left 
     leaves 



Tree rounding 

74 

• Define          “left round tree ¿ to height n” as follows: 
1. Unfold ¿ to height n (height starts at 0) 
2. Take every left leaf at height n 

1. Unfold to 
     height 3 

3. Refold 2. Take left 
     leaves 



Tree rounding 

75 

• Define          “left round tree ¿ to height n” as follows: 
1. Unfold ¿ to height n (height starts at 0) 
2. Take every left leaf at height n 

3. Refold as needed 
 
 

 
 

1. Unfold to 
     height 3 

3. Refold 2. Take left 
     leaves 



Tree rounding 

76 

Unfold to height 3 Refold Take right 
leaves 

• Define          “left round tree ¿ to height n” as follows: 
1. Unfold ¿ to height n (height starts at 0) 
2. Take every left leaf at height n 

3. Refold as needed 
 
 

 
 

• We can also define “right round” analogously: 

1. Unfold to 
     height 3 

3. Refold 2. Take left 
     leaves 



Key properties of rounding 

77 

1. Rounding a tree of height n to any height strictly 
greater than n does not change the tree. 

 

 



Key properties of rounding 

78 

Unfold Refold Take left 
leaves 

1. Rounding a tree of height n to any height strictly 
greater than n does not change the tree. 

 

• “Proof.” 



Key properties of rounding 

79 

Unfold Refold Take left 
leaves 

1. Rounding a tree of height n to any height strictly 
greater than n does not change the tree. 

 

• “Proof.” 

In general, x  Ã x  x,  
and then we take the  
left/right, leaving x 



Key properties of rounding 

80 

Unfold Refold Take left 
leaves 

1. Rounding a tree of height n to any height strictly 
greater than n does not change the tree. 

 

• “Proof.” 
 
 
 
 
 

2. If                    , then                                         . 



“Proof.” 

81 

Premise 

Unfold 

Take left 
leaves 

Refold 

Apply 
round 



“Proof.” 

82 

Premise 

Unfold 

Take left 
leaves 

Refold 

Apply 
round 



“Proof.” 

83 

Premise 

Unfold 

Take left 
leaves 

Refold 

Apply 
round 



“Proof.” 

84 

Premise 

Unfold 

Take left 
leaves 

Refold 

Apply 
round 



“Proof.” 

85 

Premise 

Unfold 

Take left 
leaves 

Refold 

Apply 
round 

They joined before – joining occurs leafwise –  
so of course they join after! 



“Proof.” 

86 

Premise 

Unfold 

Take left 
leaves 

Refold 

Apply 
round 



Proof sketch: finite SAT 
• Theorem 1: finite search for SAT 

• Given §,   9¾. ¾ ² §    iff    9¾. |¾|=|§|  Æ  ¾ ² § 

 

• Ã : trivial. 
 

• ! : Take ¾ and repeatedly round it until it is of 
height |§|.  Each equation in |§| will still hold as 
long as we also round all constants (property 2), and 
since we are never rounding to height |§|, the 
constants in § are not changing (property 1), i.e., it 
is the same system of equations. 

87 



Completeness theorem (IMPL) 
• Theorem 2: finite search for IMPL 

• Given § and §’,   (8 ¾. ¾ ² §  ! ¾ ² §’)   iff 
                                 (8 ¾. |¾|=|§| ! ¾ ² §  ! ¾ ² §’) 

 
 

88 



Completeness theorem (IMPL) 
• Theorem 2: finite search for IMPL 

• Given § and §’,   (8 ¾. ¾ ² §  ! ¾ ² §’)   iff 
                                 (8 ¾. |¾|=|§| ! ¾ ² §  ! ¾ ² §’) 

• Strategy: 
• Definition by example: averaging two trees 

 
• Proofs by example: properties of averaging 

 
• Proof sketch of main theorem 

 89 



Averaging Trees 

90 

• Define                “averaging two trees at height n”: 
 

Unfold to n-1 Refold 
Combine pairwise 
left and right leaves 



Averaging Trees 

91 

• Define                “averaging two trees at height n”: 
1. Unfold ¿ to height n-1 

 

1. Unfold to n-1 Refold 
Combine pairwise 
left and right leaves 



Averaging Trees 

92 

• Define                “averaging two trees at height n”: 
1. Unfold ¿ to height n-1 
2. Combine pairwise: left argument become left leaves 

in result; right argument become right leaves 
 

Refold 
2. Combine pairwise 
left and right leaves 

1. Unfold to n-1 



Averaging Trees 

93 

• Define                “averaging two trees at height n”: 
1. Unfold ¿ to height n-1 
2. Combine pairwise: left argument become left leaves 

in result; right argument become right leaves 
3. Refold as needed 

 

3. Refold 
2. Combine pairwise 
left and right leaves 

1. Unfold to n-1 



Key properties of averaging 
1. Averaging is the inverse of rounding, i.e., 

 

94 



Key properties of averaging 
1. Averaging is the inverse of rounding, i.e., 

 
• “Proof.” 

 
 
 
 
 
 

95 



Key properties of averaging 
1. Averaging is the inverse of rounding, i.e., 

 
• “Proof.” 

 
 
 
 
 
 

96 



Key properties of averaging 
1. Averaging is the inverse of rounding, i.e., 

 
• “Proof.” 

 
 
 
 
 
 

97 



Key properties of averaging 
1. Averaging is the inverse of rounding, i.e., 

 
• “Proof.” 

 
 
 
 
 
 

2. If                       and                      , then  
 

                                                                 . 

98 



“Proof.” 

99 

Premise 

Premise 

Apply 
average 

Unfold 

Refold 

Calculate 



“Proof.” 

100 

Premise 

Premise 

Apply 
average 

Unfold 

Refold 

Calculate 



“Proof.” 

101 

Premise 

Premise 

Apply 
average 

Unfold 

Refold 

Calculate 



“Proof.” 

102 

Premise 

Premise 

Apply 
average 

Unfold 

Refold 

Calculate 



“Proof.” 

103 

Premise 

Premise 

Apply 
average 

Unfold 

Refold 

Calculate 

Again, because joining occurs leafwise, 
if they joined before they join after! 



“Proof.” 

104 

Premise 

Premise 

Apply 
average 

Unfold 

Refold 

Calculate 



Proof sketch: finite IMPL 

105 

• Theorem 2: finite search for IMPL 
• Given § and §’,   (8 ¾. ¾ ² §  ! ¾ ² §’)   iff 

                                 (8 ¾. |¾|=|§| ! ¾ ² §  ! ¾ ² §’) 

• !: trivial. 
• Ã: Consider the case when |¾|=|§|+1.  By the 

rounding lemmas, both the left round ¾l and right 
round ¾r of ¾ are still solutions for § (and have 
height |§|).  Then we apply our hypothesis to learn 
that ¾l and ¾r are also solutions of §’.  By averaging 
property 2, their average is a solution of §’, and by 
averaging property 1, their average is equal to ¾. 

 



Plan of attack 
1. Fractional Shares 

 
2. Verification Tools 

 
3. Our Decision Procedures 

 
4. Completeness 

 
5. Experimental Results 

106 



HIP/SLEEK Embedding 

107 

 
 
 
 
 
 
 
 
 
 

• Old tool is very fast… 



HIP/SLEEK Embedding 

108 

 
 
 
 
 
 
 
 
 
 
 

• But it is incomplete… first two groups of tests were 
tweaked to avoid the (many) “dark zones” 



HIP/SLEEK Embedding 

109 

 
 
 
 
 
 
 
 
 
 

• New tool is slower, although the rest of HIP/SLEEK 
takes more 3,000ms on the first four tests 



HIP/SLEEK Embedding 

110 

 
 
 
 
 
 
 
 
 
 

• Most of the time is spent in the SMT solver (and 
communication/process overhead) 



HIP/SLEEK Embedding 

111 

 
 
 
 
 
 
 
 
 
 

• And, the new procedures are complete! 



Standalone 
• It’s actually really hard to develop tests to aggressive 

exercise the share procedures – in lots of code it will 
happen, but finding small examples is tricky. 
 
 

112 



Standalone 
• It’s actually really hard to develop tests to aggressive 

exercise the share procedures – in lots of code it will 
happen, but finding small examples is tricky. 
 

• We developed a standalone benchmark of 53 SAT 
and 50 IMPLY queries to stress the solver. 
 

113 



Standalone 
• It’s actually really hard to develop tests to aggressive 

exercise the share procedures – in lots of code it will 
happen, but finding small examples is tricky. 
 

• We developed a standalone benchmark of 53 SAT 
and 50 IMPLY queries to stress the solver. 
 

• Our new solver solved the entire suite in 1.4s. 
 

114 



Standalone 
• It’s actually really hard to develop tests to aggressive 

exercise the share procedures – in lots of code it will 
happen, but finding small examples is tricky. 
 

• We developed a standalone benchmark of 53 SAT 
and 50 IMPLY queries to stress the solver. 
 

• Our new solver solved the entire suite in 1.4s. 
 

• Our old solver could solve fewer than 10%. 115 


	Decision Procedures over�Sophisticated Fractional Permissions
	What are Fractional Permissions?
	What are Fractional Permissions?
	What are Fractional Permissions?
	Accounting
	Accounting
	Accounting
	Tree shares
	Tree shares
	Tree shares
	Tree shares
	Tree shares
	Tree shares
	Canonical Forms
	Canonical Forms
	Canonical Forms
	Addition
	Addition
	Addition
	Addition
	Addition
	Using shares in separation logic
	Using shares in separation logic
	Using shares in separation logic
	Using shares in separation logic
	Using shares in separation logic
	Plan of attack
	Verification tools
	Verification tools
	Verification tools
	Actually, modifying SLEEK is not the major difficulty…
	Actually, modifying SLEEK is not the major difficulty…
	SLEEK’s job
	SLEEK’s job
	SLEEK’s job
	SLEEK’s job
	Formal statement of problem
	Formal statement of problem
	Formal statement of problem
	Formal statement of problem
	Formal statement of problem
	Formal statement of problem
	Formal statement of problem
	Plan of attack
	Why the problem is hard
	Why the problem is hard
	Why the problem is hard
	Decomposition (SAT)
	Decomposition (SAT)
	Decomposition (SAT)
	Decomposition (SAT)
	Decomposition (SAT)
	Decomposition (SAT)
	Once every constant is ² or ±…
	Once every constant is ² or ±…
	Once every constant is ² or ±…
	Once every constant is ² or ±…
	Decomposition (IMPL)
	Decomposition (IMPL)
	Decomposition (IMPL)
	Decomposition (IMPL)
	Plan of attack
	Completeness theorem (SAT)
	Completeness theorem (SAT)
	Completeness theorem (SAT)
	Completeness theorem (SAT)
	Completeness theorem (SAT)
	Completeness theorem (SAT)
	Completeness theorem (SAT)
	Completeness theorem (SAT)
	Completeness theorem (SAT)
	Tree rounding
	Tree rounding
	Tree rounding
	Tree rounding
	Tree rounding
	Key properties of rounding
	Key properties of rounding
	Key properties of rounding
	Key properties of rounding
	“Proof.”
	“Proof.”
	“Proof.”
	“Proof.”
	“Proof.”
	“Proof.”
	Proof sketch: finite SAT
	Completeness theorem (IMPL)
	Completeness theorem (IMPL)
	Averaging Trees
	Averaging Trees
	Averaging Trees
	Averaging Trees
	Key properties of averaging
	Key properties of averaging
	Key properties of averaging
	Key properties of averaging
	Key properties of averaging
	“Proof.”
	“Proof.”
	“Proof.”
	“Proof.”
	“Proof.”
	“Proof.”
	Proof sketch: finite IMPL
	Plan of attack
	HIP/SLEEK Embedding
	HIP/SLEEK Embedding
	HIP/SLEEK Embedding
	HIP/SLEEK Embedding
	HIP/SLEEK Embedding
	Standalone
	Standalone
	Standalone
	Standalone

