
Automatic Verification of Multi-
threaded Programs by Inference of

Rely-Guarantee Specifications

Xuan Bach-Le1, David Sanan1, Sun Jun2, Shang-Wei Lin1

1School of Computer Science and Engineering, Nanyang Technological University, Singapore

2School of Information Systems, Singapore Management University, Singapore

An automated framework for

compositional verification of

concurrent programs

Concurrent programs

Multiple threads run concurrently with shared resources
(e.g. memories, data structures)

Testing is not sufficient, bugs cannot be consistently
reproduced

Verification is challenging: space-space explosion of the
interleavings

Model checking

• Theories: LTL, CTL, automata,…

• Tools: PAT, SPIN, Java Pathfinder,...

• Pros: decidable, automated

• Cons: hard to scale

Formal Systems

• Theories: CSL, Rely-Guarantee,...

• Tools: CompCert, Iris, Caper,…

• Pros: compositional, scalable, expressive

• Cons: undecidable, semi-automated

Verification approaches for
concurrency

Model checking

• Theories: LTL, CTL, automata,…

• Tools: PAT, SPIN, Java Pathfinder,...

• Pros: decidable, automated

• Cons: hard to scale

Formal Systems

• Theories: CSL, Rely-Guarantee,...

• Tools: CompCert, Iris, Caper,…

• Pros: compositional, scalable, expressive

• Cons: undecidable, semi-automated

Verification approaches for
concurrency

A scalable automated formal system

Inference rules based on
Rely-Guarantee technique
for compositional reasoning

Automated via CEGAR
(Counter-Example Guided
Abstraction Refinement)

Table of contents

1. Motivation

2. Rely-Guarantee technique

3. Verification framework

4. Evaluation

Rely-Guarantee conditions

• Rely: specs of external environment

• Guarantee: specs of the thread's internal actions

Thread 1 Thread 2

G1 G2

R The Rely of one thread contains

the Guarantees of others

Example

Guarantee

The thread can update x

from 1 into 2

Rely

The environment can change x

from 1 into 2

Specification

1. Program c with precondition P satisfies Rely R and Guarantee G:

a) State change satisfy G

b) State change assume the influence from R

2. Assume c terminates normally. Then Q is the post-condition

Compositional Reasoning

Thread 1

Thread 2

Thread 1 Thread 2||

Rely-Guarantee relations are usually assumed

Compositional Reasoning

Thread 1

Thread 2

Thread 1 Thread 2||

Rely-Guarantee relations are usually assumed

Table of contents

1. Motivation

2. Rely-Guarantee technique

3. Verification framework

4. Evaluation

Overview of the framework

Post-condition:

We generate the R-G relations instead of assuming ones

Thread n

Thread 1

CEGAR

refinement

Thread 1

Thread n

….….

Overview of the framework

Post-condition:

We generate the R-G relations instead of assuming ones

Thread n

Thread 1

CEGAR

refinement

Thread 1

Thread n

….….

Proof construction: High-level

1. For each thread i, generate the local proof Li

2. Compute the Guarantee Gi from Li

3. Ri = union of Gj where j <> i

Ri contain other Gj Ri may not be valid: Li does not satisfy Ri

Proof construction: High-level

1. For each thread i, generate the local proof Li

2. Compute the Guarantee Gi from Li

3. Ri = union of Gj where j <> i

Ri contain other Gj Ri may not be valid: Li does not satisfy Ri

Refinement via counter examples:
High-level

Input: local proofs that fail to satisfy their Relies

Fix the assertions

where the Relies

fail

Reconstruct the

local proofs

Recompute the

Guarantees

Recompute the

Relies

Inference rules for construction of
local proof and Guarantee relation

A deductive system for constructing/fixing local proof and Guarantee

1. Program c with precondition P satisfies the Guarantee G

2. If c terminates normally then Q is the post-condition

Checking validity of Relies: Key idea

Transform the validity conditions into

equivalent Boolean constraints

UNSAT

valid

SAT

solution is the counter-example

Table of contents

1. Motivation

2. Rely-Guarantee technique

3. Verification framework

4. Evaluation

Implementation

ReGaSol: Rely – Guarantee Solver

• Java, 4500+ LOC

• 2 main components:

ReGaSol+ with optimization: parallelization, symmetry reduction, …

Proof

Generator

Stability

Checker

• Construct + fix local proofs

• Compute Guarantees + Relies

• Check validity of Relies

• Generate counter-examples

Experiment

A small benchmark of 12 programs:

• Standard algorithms for mutex: Peterson, Bakery, Szymanski,…

• Programs with loops

Test against Threader and Lazy-CSeq

Results

Mutex algorithms:

ReGasol+(5.59s) > ReGaSol (7.78s) > Lazy-CSeq(13.1s) > Threader(79.2s)

Loop programs:

ReGaSol(0.45s) > ReGaSol+(0.54s) > Lazy-CSeq(218.64s) > Threader(T/O)

Conclusion and future work

An automated framework for verification of concurrent programs

1. Inference rules based on Rely-Guarantee for compositional reasoning

2. CEGAR for refinement

3. ReGaSol and ReGaSol+ with optimizations

Future works

1. Support shared data structures

2. Weakest precondition for completeness

Thank you
☺

Q & A

