
DISJOINT FRACTIONAL PERMISSIONS IN
VERIFICATION: APPLICATIONS, SYSTEMS AND

THEORY

XUAN-BACH LE
Bachelor in Computer Science (NUS 2012, First-class Honour)

Bachelor in Mathematics (NUS 2012, First-class Honour)

A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE
NATIONAL UNIVERSITY OF SINGAPORE

2017

Supervisor:
Dr Aquinas Hobor

Mentor:
Dr Anthony W. Lin, University of Oxford

Examiners:
Professor Joxan Jaffar

Professor Olivier Gerard Henri Marie Danvy
Dr James Brotherston, University College London

Declaration

I hereby declare that this thesis is my original work and it has been written by
me in its entirety. I have duly acknowledged all the sources of information which
have been used in the thesis.

This thesis has also not been submitted for any degree in any university previously.

Xuan-Bach Le
14 November 2017

ii

Acknowledgments

First of all, I am grateful to my supervisor, Aquinas Hobor, for his delicate

supervision during my PhD study. I am very fortunate to be his first PhD

student and thus I have received enormous supports and motivations from him

so that I can become an independent researcher. My PhD journey with him, in

retrospect, has been so much relaxing, enjoyable and memorable.

I would like to express my sincere gratitude to my mentor, Anthony W. Lin, for

his constant counseling and supports. He has taught me many valuable lessons

in term of technical research and social life that have shaped me to become

the person I am now. Moreover, this thesis would not be possible without his

guidance during my PhD.

I want to thank Prof. Frank Stephan, Prof. Sanjay Jain and Prof. Yang Yue for

their wonderful courses on automata theory, complexity and logic. The materials

from their courses have helped me significantly for my PhD topic. I also thank

my (other) collaborators –Cristian Gherghina, Thanh-Toan Nguyen and Prof.

Wei-Ngan Chin– for their helps to get the papers published.

I wish to thank Prof. Olivier Danvy, Prof. Joxan Jaffar and Prof. James Broth-

erston, for being my examiners as well as their precious suggestions that has

shaped several directions for this thesis during its early form.

I take this opportunity to record my sincere thanks to Anshuman Mohan for his

comprehensive review over my thesis, and to Vinh Ho, Shengyi Wang, Andreea

Costea, for their partial reviews and helpful suggestions.

I would like express my sense of gratitude to my parents, Van-Tuong Le and

Kim-Cuc Pham, for their mental support and unceasing encouragement. I also

iii

iv

want to thank my seniors Quang-Loc Le and Duc-Hiep Chu for their honest

advices and recommendations. Last but not least, I want to thank Yu-Fang Chen

and his colleges for their hospitality during my stay at Academia Sinica, Taiwan;

and Tan, Than, Bao, Vu, Long, Dai, Quang for their friendship and willingness

to listen and give advice to me during my PhD study.

Abstract

Fractional permissions enable sophisticated management and reasoning of resource

ownership and sharing in Separation Logic (SL). One of the most common

models of permission consists of rational numbers in [0, 1] and uses addition

for splitting/joining permissions. To support the verification task, rational

permissions are embedded into SL formulae through the fractional maps-to

x
p7−→ v which asserts that the value v is stored at address x with permission p.

Using such notation, it is convenient to express the notion of resource sharing,

i.e., a thread that possesses the resource x p1+p27−−−−→ v can split it into x p17−→ v and

x
p27−→ v and pass the latter to its child thread. While the rational model is simple,

it poses a technical challenge to the core separation property of SL that allows

smooth compositional reasoning. In particular, SL has a special operator ∗ called

separating conjunction to specify the disjointness of resources, e.g., x 7→ 1 ∗ y 7→ 1

is only satisfiable if x and y are two different addresses. On the other hand, the

two addresses x, y in the predicate x 0.57−−→ 1 ∗ y 0.57−−→ 1 could be aliasing because

x
0.57−−→ 1 ∗ x 0.57−−→ 1 is equivalent to x 17−→ 1 which is satisfiable. As a result, there

has been substantial work in proposing better models for fractional permissions

in the last twenty years.

In this thesis, we study the fractional permission model of tree shares proposed by

Dockins et al. as a novel treatment to the disjointness problem. The tree domain

consists of boolean binary trees in canonical form; and instead of addition, we

have the “join” operator ⊕ to regulate resource sharing. Furthermore, we have a

special tree multiplication-like operator ./ called “bowtie” that is useful to assign

permissions over arbitrary predicates. Our main contribution is to investigate

and extend the research knowledge of tree shares via three pillars: applications,

system, and theory.

v

vi

In term of applications, we demonstrate the embedding of tree shares into SL

formulae to reason about shared resources in concurrent context. The demon-

stration is two-fold: first, we show how to embed tree shares into SL assertion

language as well as how to extract tree share constraints from SL formulae.

Second, we use tree shares as the underlying structure to develop a general logic

framework with predicate multiplication that allows permission reasoning over

arbitrary predicates. Our approach can handle sophisticated verification tasks

such as bi-abduction inference, inductive predicates and precision reasoning.

Second, we achieve the systems pillar by developing a set of decision procedures

over tree equations drawn from the program proof. Our decision procedures are

sound and complete and benchmarked in the HIP/SLEEK verification toolset.

Subsequently, we refine and improve the procedures so that they can also handle

negative constraints with reasonable performance. Furthermore, the procedures

are certified in the theorem prover Coq, which can be extracted to OCaml using

the Coq extraction feature.

Lastly, we investigate the decidability and complexity of the tree share structure.

We obtain a detailed view of the complexity by studying different overlapped

sub-structures. Using this approach, we manage to find interesting complexity

results that vary from polynomial time to non-elementary. Along the way, we

establish several sophisticated connections between the tree share structure and

other well-known domains such as automatic structures, word equation and

Boolean Algebra. Such resemblances suggest certain problems in these domains

can be reduced to tree structure if the tree encoding is more pleasant to handle

or vice-versa. For instance, we can transform tree share constraints into word

equation constraints and then use standard string solvers to handle them.

Contents

List of Figures xii

List of Tables xiv

List of Algorithms xv

1 Introduction 1

1.1 Motivation 1

1.2 Contributions 7

1.2.1 Applications of tree shares 7

1.2.2 Systems of tree shares 8

1.2.3 Theory of tree shares 10

1.3 Structure of the thesis 11

2 Preliminaries and notations 13

2.1 Basic definitions and notations 14

2.1.1 Language and structure 14

2.2 Tree share structure 18

2.2.1 Tree share domain and basic operators 18

2.2.2 Tree share notations 22

2.3 Separation logic 25

2.3.1 Hoare logic 25

2.3.2 Separation logic 30

2.3.3 Concurrent separation logic 36

2.4 Permission models 39

3 Reasoning over disjoint fractional permissions 44

3.1 Predicate multiplication 45

3.1.1 Proof rules for predicate multiplication 47

vii

Contents viii

3.1.2 Verification of processTree using predicate multiplication 51

3.2 Bi-abduction inference 52

3.2.1 Fractional residue computation 52

3.2.2 Extension of predicate axioms 54

3.2.3 Abductive inference 55

3.2.4 Frame inference 57

3.3 A proof theory for fractional permissions 58

3.3.1 Base logic 59

3.3.2 Proof theory for π · P and x p7−→ y 61

3.3.3 A proof theory for proving that predicates are precise 65

3.3.4 Proof theory for induction over the finiteness of the heap 66

3.3.5 Using our proof theory 68

3.4 Soundness proof: Building a model for our logic 73

3.4.1 Cancellative separation algebras 73

3.4.2 Fractional share algebras 74

3.4.3 Scaling separation algebras 75

3.4.4 Compositionality of scaling separation algebras 77

3.4.5 Model for inductive logic 79

3.5 Lower bounds on predicate multiplication and disjoint shares 79

3.5.1 Predicate multiplication’s axioms force share model properties 80

3.5.2 Disjointness in a multiplicative setting 81

3.6 Share models 82

3.6.1 The shortcoming of rational permissions 82

3.6.2 The tree share model for fractional shares 84

3.6.3 Applications of tree shares 85

3.7 The ShareInfer fractional biabduction engine 87

3.8 Related work and conclusion 89

4 Complete decision procedures for tree share constraints 90

4.1 Motivation: share constraints in SL formulas 91

4.1.1 Shares in HIP/SLEEK and their extraction procedure 91

Contents ix

4.1.2 Problems over share equation system 94

4.2 Decision procedures over tree shares 96

4.2.1 Utility functions for SAT and IMP 98

4.2.2 Overview of SAT procedure 103

4.2.3 Overview of IMP procedure 105

4.2.4 Optimizations 107

4.3 Sufficiency of finite search over tree shares 108

4.3.1 The sufficiency of finite search for SAT 108

4.3.2 The sufficiency of finite search for IMP 110

4.4 Experiment evaluation 113

4.5 Conclusion 117

5 Complete certified procedures for tree share constraints 118

5.1 Disequations over shares and their motivative problems 120

5.1.1 Disequations over tree shares 120

5.1.2 Problem formulation 121

5.2 Overview of our decision procedures 122

5.2.1 The architecture of GSAT and GIMP 122

5.2.2 Basic notations and definitions 124

5.3 Decision procedure GSAT 126

5.3.1 Overview of GSAT 126

5.3.2 Example of GSAT 127

5.4 Decision procedure GIMP 129

5.4.1 Overview of GIMP 129

5.4.2 Example of GIMP 131

5.5 Correctness of GSAT and GIMP 132

5.5.1 Domain reduction 134

5.5.2 Correctness proof of Theorem 5.3.1 136

5.5.3 Correctness proof of Theorem 5.4.1 139

5.6 Performance-enhancing components 144

5.7 Experimental evaluation 147

Contents x

5.8 Development file list 149

5.9 Conclusion 151

6 Decidability and complexity of tree shares 153

6.1 Preliminaries 154

6.1.1 Language and structure 154

6.1.2 Computational complexity 155

6.1.3 Boolean Algebra 160

6.2 Connection to countable atomless Boolean Algebra 163

6.3 Upper bound for first-order theory of 〈T,u,t, ·̄, ◦, •〉 165

6.3.1 Definitions and notations 166

6.3.2 Decision procedure for flattening tree formulas 168

6.3.3 Analyzing the upper bound complexity 171

6.4 Conclusion 174

7 Fragments of ./ and their complexity 175

7.1 Preliminaries 177

7.1.1 Word equation 177

7.1.2 Bottom-up tree automaton 178

7.1.3 Tree automatic structures 179

7.2 Decidability of general multiplication ./ over tree shares 181

7.2.1 Infinite alphabets 183

7.2.2 Finding an infinite alphabet inside T+ 184

7.2.3 Connecting tree shares to word equations 187

7.3 Fragment 〈T, ./τ ,τ ./〉 189

7.3.1 Decidability and complexity result 190

7.3.2 Connection to string structure with successors 191

7.4 Fragment 〈T,t,u, ·̄, ./τ 〉 193

7.4.1 Tree automata construction 194

7.4.2 Non-elementary lower bound 197

7.5 Conclusion 200

Contents xi

8 Conclusion and Future work 202

References 205

A Additional proofs for Chapter 3 216

A.1 Necessary conditions for scaling rules 216

A.2 On essential axioms for fractional permissions 221

List of Figures

1.1 Graphical representation of an instance of the predicate tree(τ, 0.3) 4

2.1 Canonical representation of tree shares 18

2.2 BA axioms 19

2.3 Properties of ⊕ which follow from BA axioms in Figure 2.2 21

2.4 Properties of ./ 22

2.5 A simple language L1 25

2.6 Assertion language for Hoare logic 26

2.7 Hoare rules 27

2.8 Step relation for Hoare logic 29

2.9 Semantics of Hoare triple 29

2.10 A simple language L2 for SL 31

2.11 Assertion language for separation logic 31

2.12 Memory-related rules for Separation logic where e ⇓ v asserts v is the evaluation

of the expression e. 32

2.13 Semantics of assertion language for SL 33

2.14 Semantics of small step relation for heap-related commands 34

2.15 Semantics of Hoare SL triple 35

2.16 Semantics of separating connectives 35

2.17 Small step relation for parallel composition in [Vaf11] 39

3.1 The processTree function in a C-like language with a parallel operator c1||c2 46

3.2 Distributivity of the scaling operator over pure and spatial connectives 48

3.3 Reasoning with the scaling operator π · P . 49

3.4 Abductive inference 56

3.5 Frame inference 56

xii

List of Figures xiii

3.6 Proof theory for separation logic with covariant recursion 60

3.7 Standard axioms for modal logic 60

3.8 Core proof theory for predicate multiplication 62

3.9 Uniformity and precision for predicate multiplication 62

3.10 Proof theory for fractional maps-to 62

3.11 Proof theory for precision 62

3.12 Proof theory for substructural induction 62

3.13 Proof that tree(x) is full-uniform 70

3.14 Key lemmas we use to prove recursive predicates precise 71

3.15 Proof that list(x) is precise. 72

3.16 The 14 additional axioms for scaling separation algebras beyond those inherited

from cancellative separation algebras 75

3.17 A Java-like code that creates a binary trees from two disjoint trees 83

3.18 Evaluation of our proof systems using ShareInfer 88

4.1 SL formulae with shares 93

5.1 Two decision procedures GSAT and GIMP implemented in Coq 123

5.2 Illustrated examples of applying the tree operators 133

6.1 Axioms of BA (variables a, b, c are universal) 160

7.1 An accepting run of tree automaton in Ex. 7.1.2 over node(node(•, ◦), ◦). 179

7.2 The convolution of (t1, t2, t3) in Ex. 7.1.3. 180

7.3 An accepting run of R in Ex. 7.1.4. 181

7.4 Convolution of (τ1, τ2) in Example 7.4.1. 196

7.5 An accepting run over tree automaton for predicate ./τ in Example 7.4.1. 196

List of Tables

4.1 Experimental timing results 116

5.1 Evaluation of our procedures using HIP/SLEEK 148

5.2 Our development 150

xiv

List of Algorithms

1 Common utility functions for SAT and IMP 99

2 Decision procedure SAT for SAT problem 103

3 Decision procedure IMP for IMP problem 105

4 Solver GSAT for systems with disequations 126

5 Solver SSAT for singleton systems 126

6 Decompose system into sub-systems of height zero 127

7 Solver GIMP for entailment of share systems with disequations 129

8 Solvers for entailment of Z-systems and S-systems 130

9 Flatten a formula into an equivalent formula of height zero 169

xv

Chapter 1
Introduction

“Our lives are not our own. We are

bound to others, past and present, and

by each crime and every kindness, we

birth our future.”

David Mitchell, Cloud Atlas.

1.1 Motivation

In the last decade, there has been substantial progress in the study of formal methods for

concurrency reasoning in both theory ([dRPDYG14, DYDG+10, HMP17, JSS+15, SB14,

TDB13, ORY01, IO01]) and verification tools ([FLLV15, HG12, KLVU10, LCT15, MHWL12,

SNB15, DYdAB17]). The main challenge of this topic is that shared resources can lead to

race condition among threads, which results in nondeterministic outcomes. One standard

solution is the use of locks or semaphores to protect the shared resources from interference,

i.e., by establishing mutual exclusion in critical sections. As a result, it is desirable to

provide a foundational semantics that is capable of reasoning about the race-free condition

and a formal proof system to assist verification tools. O’Hearn approached this problem by

proposing Concurrent Separation Logic (CSL) [OHe07], which is an extension of Separation

Logic (SL) [Rey02]. A model for this logic was first invented by Brookes [Bro07a] using trace

semantics in which traces are sequences of transition machine states to bookkeep resources.

CSL has received enormous attention from researchers and has become one of the central

topics in program verification ([BCOP05, Boy03, DHA09, HHH08, PBC06, GBC11, HW06,

Hob08, HAZ08, Vaf11, Vaf07]).

1

Chapter 1. Introduction 2

Reynolds et al. ([Rey02, IO01, ORY01]) developed SL as a formal tool to prove correctness

of programs with resources. One key feature of SL is the separating conjunction ∗ that

partitions program heap into disjoint components. For example, predicate x 7→ v1 ∗ y 7→ v2

expresses the fact that addresses x and y are disjoint and thus modifying the content of one

address will not affect the content of the other. Such disjointness property helps prevent any

further pointer aliasing complications that a verifier has to consider. Using ?, one has the

Frame rule (Eqn. 1.1) which is a powerful tool for local reasoning. Here c is the executing

command whereas P,Q, F are predicates describing the heap states. Specifically, P is the

precondition, Q is the postcondition, F is the frame that represents irrelevant parts of the

heap and the triple {P}c{Q} represents the transition of the heap state from P to Q when

c is executed. Briefly speaking, the rule says that it suffices to consider the local state P

when reasoning about c if any variable modified by c is not a free variable of F , or in other

words, c is independent of F .

{P} c {Q} mod(c) ∩ fv(F) = ∅
{F ∗ P} c {F ∗Q}

Frame (1.1)

The CSL developed by O’Hearn [OHe07] contains a crucial assumption that if threads do

not share resources then they should not interfere with each others. Consequently, the heap

can be seen as a combination of disjoint components possessed by individual threads. The

parallel composition c1||c2 expresses the concurrent execution of two programs c1 and c2.

Its behavior is portrayed as the Parallel rule (Eqn. 1.2).

{P1} c1 {Q1} fv(c1, P1, Q1) ∩mod(c2) = ∅
{P2} c2 {Q2} fv(c2, P2, Q2) ∩mod(c1) = ∅

{P1 ∗ P2} c1 || c2 {Q1 ∗Q2}
Parallel (1.2)

In short, the rule says if two commands c1 and c2 do not interfere with each other then

running c1 and c2 concurrently with the combined precondition P1 ∗ P2 will result in the

combined postcondition Q1 ∗Q2. Although this rule is useful to verify race-free programs, its

usage is significantly limited by the fact that a number of concurrent programs are purposely

designed to not be race-free. As a result, the language and semantics of CSL need to be

Chapter 1. Introduction 3

extended to capture the reasoning of resource sharing. One solution is to tag resources with

permissions (ownerships) that dictate certain actions to be applied to them, e.g., read and

write permission. Hence the fractional maps-to x p7→ v indicates the address x with value v

and non-empty permission p (e.g. p 6= 0 for rational permissions). One of the original uses

of fractional permissions was to assert resource sharing via locks [OHe07]. Furthermore, it is

desirable to have some mechanisms that regulate the distribution of permissions, i.e., splitting

and joining. Generally, a permission model P = 〈P,⊕〉 consists of the domain P equipped

with a partial join operator ⊕ to monitor the splitting and combining of permissions.

Example 1.1.1. The rational model Q = 〈[0, 1],+〉 proposed by Boyland [Boy03] contains

all rationals in [0, 1] and p1 + p2 is defined if their sum is at most 1. Here 0 indicates the lack

of permission, 1 is the full permission and the remaining rationals are called fractional. A

fractional mapping x p7−→ v can be split into two smaller fractional mapping x p17−→ v ∗ x p27−→ v

s.t. p = p1 + p2, e.g., 1 0.87−−→ 2 is equivalent to 1 0.67−−→ 2 ∗ 1 0.27−−→ 2. /

The advantages of Q are its simple, intuitive representation and efficient computation. In

addition, permissions in Q can be split infinitely and this property is useful to reason about

fork-join and recursive programs. Its main disadvantage is the loss of disjointness property

that is fundamental to SL. Simply put, while x 7→ v ∗ x 7→ v is unsatisfiable in classical SL,

this is not the case when fractional permissions in Q are introduced into the language. In

particular, the predicate x p7→ v ∗ x p7→ v can be satisfiable, e.g., x 0.257→ v ∗ x 0.257→ v is equivalent

to x 0.57−−→ v which is satisfiable. The consequence of such unexpected behavior can be clearly

visualized using the following recursive predicate definition for fractionally-owned binary

trees:

tree(τ, p) def= (τ = null ∧ emp) ∨

∃τl, τr. (τ p7→ (τl, τr) ∗ tree(τl, p) ∗ tree(τr, p)). (1.3)

This tree predicate is generalized from the standard binary tree definition in SL by asserting

only a fraction p ownership of the root and recursively doing the same for the left and right

substructures, and so at first glance looks obviously correct. Indeed, when p ∈ (0.5, 1] then

every tree predicate tree(τ, p) is actually a tree. Interestingly, when p ∈ (0, 0.5] then tree

Chapter 1. Introduction 4

can describe some unintended directed acyclic graphs (dag) such as tree(root, 0.3) in Fig.1.1

where grand is owned with share 0.3 + 0.3 = 0.6. One serious consequence is that P and Q

in P ∗ Q could share common memory addressees and thus this behavior limits the local

reasoning power of SL. We will discuss the disadvantages of rational model closely in §3.6.1.

root 0.37→ (left, right)∗

left 0.37→ (null, grand) ∗

right 0.37→ (grand, null) ∗

grand 0.67→ (null, null)

root

left right

grand

0.3 0.3

0.3 0.3

Figure 1.1: Graphical representation of an instance of the predicate tree(τ, 0.3)

Since then, there has been substantial research to improve the model Q or replace a better

model ([Par05, LCT15, BCOP05, HM15, BMSS14]). Yet none of them are considered

adequately reasonable as they suffer at least one of the three main pitfalls: disjointness

problem, undecidability or not infinitely-splittable. Dockins et al. [DHA09] proposed the

following “tree share” model T = 〈T,⊕〉, which, as we will show, remedies all of the

aforementioned issues. A tree share τ ∈ T is simply a binary tree with boolean leaves:

τ
def= ◦ | • |

τ τ
(1.4)

Here ◦ and • denote the empty and full share respectively (similar to 0 and 1 in the rational

model Q). We require that all tree shares are in canonical form, i.e., they do not contain

sub-trees
• •

and
◦ ◦

. More precisely, a tree is in canonical form when its representation

is the most compact under the equivalence relation ∼=:

◦ ∼= ◦ • ∼= • ◦ ∼=
◦ ◦

• ∼=
• •

τ1 ∼= τ ′1 τ2 ∼= τ ′2

τ1 τ2

∼=
τ ′1 τ ′2

By unfolding the definition 1.4, we obtain two ‘half’ shares
◦ •

and
• ◦

, and four ‘quarter’

Chapter 1. Introduction 5

shares, beginning with
• ◦ ◦

. In contrast, the rational model Q only has one half

permission 0.5 and one quarter permission 0.25. It is a feature that the two half shares are

distinct from each other, which explains why T can solve the disjointness problem.

The join operator ⊕ on tree shares requires some maneuvers of tree unfolding/folding to

temporarily escape the canonical form. In brief, we unfold two trees τ1, τ2 under ∼= into the

same shape, join them leaf-wise and then fold them back to canonical form. At the leaf level,

⊕ behaves similarly as partial addition in which ◦ and • are interpreted as 0 and 1:

• ⊕ ◦ = ◦ ⊕ • def= • ◦ ⊕ ◦ def= ◦ • ⊕ • not defined.

Example 1.1.2.

• ◦ ◦
⊕

◦ • • ◦

∼=

• ◦ ◦ ◦

⊕

◦ • • ◦

=

• • • ◦

∼=
• • ◦

.

/

Because • ⊕ • is undefined, the join relation on trees is a partial operation. Dockins et al.

[DHA09] prove that the join relation satisfies a number of useful axioms e.g. associativity

and commutativity. One key axiom, not satisfied by Q = 〈[0, 1],+〉, is “disjointness”:

x⊕ x = y → x = ◦ .

The corresponding axiom for the rational model would be x+x = y → x = 0 which is clearly

false. To be precise, if τ is a positive share, i.e. τ 6= ◦, then the predicate x τ7−→ v ∗ x τ7−→ v

is not satisfiable because τ ⊕ τ is not defined. Interestingly, this property forces the tree

predicate in equation 1.3 to behave properly. As tree shares satisfy the disjointness axiom,

we will usually refer them as disjoint permissions to distinguish them from the non-disjoint

rational permissions.

On the other hand, Dockins et al. [DHA09] also defined Boolean-like operators for tree

shares: t (union), u (intersection) and ·̄ (complement). These operators are generalized

Chapter 1. Introduction 6

from their standard Boolean counterparts in which the computation is done leaf-wise with

the help of ∼= to unfold/fold the trees temporarily. Just like rational numbers, tree shares

are also equipped with a multiplicative operator ./ (bowtie). Briefly speaking, τ1 ./ τ2 is

defined by replacing all black leaves of τ1 with an instance of τ2. We will heavily discuss the

formal definitions and properties of the above operators in §2.2.

The appealing theoretical aspect of the tree-share model has been greatly appreciated as

a reasonable fractional permission for SL. Hence it is used to design and reason about

the soundness proofs of several CSL domains [Hob08, HG11]. Moreover, the pleasant

computability of ⊕ has led to it being incorporated into several verification tools such as

HIP/SLEEK [NDQC07, HG12], VST [App11b] and Heap-Hop [VLC10, Vil11]. Hobor and

Gherghina [HG12] showed how to verify entailment between SL formulas with tree shares by

splitting it into two independent components, namely a fraction-free SL entailment and an

entailment between systems of share equations.

Example 1.1.3. The entailment x π17→ a ∗ x π27→ b ` ∃π. x π7→ c is divided into the fraction-free

x 7→ a ∧ a = b ` x 7→ c ∧ c = a and the share entailment π1 ⊕ π2 = π3 ` ∃π. π = π3. Here

we use the entailment symbol ` as an alternative for implication ⇒. /

An important technical issue with the tree shares is the absence of algorithms and automatic

tools to reason about share constraints. Heap-Hop employed a simplistic heuristic to prove

entailments involving tree shares, and although HIP/SLEEK did better by using bounding

heuristics [HG12], their tool is still significantly incomplete. For example, it cannot verify the

trivial entailment v1 ⊕ v2 = v3 ` v2 ⊕ v1 = v3. Moreover, even small programs can generate

hundreds of share entailment checks, and this is the main barrier that prevents the tree

shares from being widely used in those systems. As a result, the main goal of this thesis

is to conduct a comprehensive study about the tree share model so that our

results can provide useful applications and efficient algorithms to reason about

permissions in concurrent programs. The rest of this chapter is organized as follow:

1. In §1.2, we propose three main goals for this thesis, namely the applications, theory

and system of tree shares.

2. In §1.3, we briefly introduce the contents of each remaining chapter in the thesis.

Chapter 1. Introduction 7

1.2 Contributions

In this thesis, we conduct a comprehensive study of the tree share structure and apply

our results to solve practical problems in program verification. Our main motivation

comes from the observation that tree share structure T is a good candidate for fractional

permissions in concurrency and yet there is little attempt to use it for practical applications.

A straightforward application of T is an upgrade of the rational model Q = 〈Q,+,×〉

in which + is replaced by ⊕ and × is replaced by ./. More importantly, we discover an

interesting application of bowtie in constructing scaling permissions as an effective way to

manipulate permissions at large scale, e.g., assigning permission to user-defined recursive

predicates. However, without reasonable decision procedures over T , those applications are

not adequately convincing for automatic SL verifiers such as HIP/SLEEK [NDQC07] and

Caper [DYdAB17] to integrate tree shares into their infrastructural core. Hence, another

main goal of this thesis is to establish a concrete foundation over decidability and complexity

of T which will ultimately be the guidance to develop decision procedures for T . In summary,

there are three main targets that we aim to achieve: applications, systems and theory of T .

1.2.1 Applications of tree shares

When T = 〈T,⊕, ./〉 was first introduced by Dockins et al. [DHA09], it was used to construct

a semantic model for fractional permissions. More precisely, ⊕ satisfies unique properties

such as disjointness (to avoid the deformation of structures) and infinite split-ability (for

recursive programs). Furthermore, the computation of ⊕ is easy to handle by recursion.

On the other hand, ./ was briefly mentioned as a helper operator for token counting to

split a token tree τ into two token trees τ ./
◦ •

and τ ./
• ◦

. We took a further step

by implementing T into HIP/SLEEK [NDQC07], an automatic SL verifier. This requires

certain mechanisms on how to embed T into SL formulas as well as extract the tree share

constraints from them.

Contribution 1 (§4). We provide a modular integration of 〈T,⊕〉 into SL formulas.

Furthermore, the tree shares constraints can be independently extracted from the SL

Chapter 1. Introduction 8

formulas to be solved separately.

One important question is how to regulate permissions uniformly at predicate level. In detail,

suppose we have a resource described by the predicate R that is shared among threads.

Moreover, R can be recursive, e.g. list or tree, and thus one cannot simply split/join the

permissions address-wise. To simplify, assume all addresses in R have permission τ and we

would like to split R into two pieces which are essentially two copies of R but with different

permissions, one with τ ./
◦ •

and the other with τ ./
• ◦

. What we want can informally

be described as “uniformly split all permission τ in R into τ ./
◦ •

and τ ./
• ◦

while

keeping same addresses and values”. Formally, let τ · R be the τ -fraction of R. Then we

would like to have the following inference:

R ` • ·R ` (
◦ •

⊕
• ◦

) ·R ` (
◦ •

·R) ∗ (
• ◦

·R).

Contribution 2 (§3). We use 〈T,⊕, ./〉 to develop scaling permissions to reason about

permissions at large scale, i.e., over arbitrary predicates. Additionally, we explain why the

rational model Q = 〈[0, 1],+,×〉 is inferior to T in this aspect. Furthermore, we establish

some foundations for the scaling separation algebra which is an extension of separation

algebra with the scaling operator.

1.2.2 Systems of tree shares

When tree shares were first implemented and used in MSL [ADH09], all tree share formulae

were proved manually in Coq. In particular, the proof was derived directly from tree shares

properties, or by induction over the structure of tree shares. As Hobor and Gherghina [HG12]

attempted to use T for their barrier structure in automatic verifier HIP/SLEEK, they realized

the need for a decision procedure to handle tree share formulas. Formally, we would like to

develop a decision procedure that verifies whether a first-order tree share formula Φ is valid.

Essentially, this is a model checking problem as the semantics of our formulas is interpreted

in the specific tree share domain only. However, this problem is nontrivial because the

Chapter 1. Introduction 9

domain T is infinite and therefore a brute-force approach is impossible. A simple solution

would be to construct a semi-decision using proof system from Figure 2.3. However, this

approach is unreliable as some simple facts about tree shares cannot be derived efficiently

(Example 1.2.1).

Example 1.2.1. The formula ∀a∃b. a⊕ b = • is valid while ∃b∀a. a⊕ b = • is invalid. /

The tree shares constraints from [HG12] are closed formulae expressed using existential form

SAT and implication form IMP that contain positive constraints a⊕ b = c:

• SAT: ∃v̄.
∧
a⊕ b = c.

• IMP: ∀v̄.(∃v̄1.
∧
a⊕ b = c→ ∃v̄2.

∧
d⊕ e = f).

Contribution 3 (§4). We propose sound and complete decision procedures SAT for SAT and

IMP for IMP. Our decision procedures are implemented and benchmarked in HIP/SLEEK.

When modeling fractional permission using tree shares, we exclude the empty tree ◦ from

the domain T for two reasons:

1. The redundant predicate x ◦7−→ v can be simplified to emp.

2. For a predicate x π7−→ v, it is often the case that we want π to be positive, i.e. π 6= ◦, to

gain read access as well as to split π into two positive shares π1, π2 s.t.:

x
π7−→ v ∧ π 6= ◦ ` ∃π1∃π2. x

π17−→ v ∗ x π27−→ v ∧ π = π1 ⊕ π2 ∧ π1 6= ◦ ∧ π2 6= ◦.

The previous procedures cannot handle negative constraint x 6= ◦ properly. In fact, we found

several bugs when using them to verify SAT and IMP constraints with positive shares. On

the other hand, positive shares is a special form of negative constraint ¬(a ⊕ b = c), i.e.,

a 6= ◦ is equivalent to ¬(a⊕◦ = ◦). It is worth highlighting that we avoid using the negative

form a⊕ b 6= c which means a⊕ b is defined and their sum is different from c. In contrast,

¬(a⊕ b = c) contains another possibility that the sum a⊕ b is not defined, e.g., ¬(•⊕ • = •).

Thus the general satisfiability and implication problems that contain negative constraints

can be expressed as:

• GSAT: ∃v̄.
∧
a⊕ b = c

∧
¬(a′ ⊕ b′ = c′).

Chapter 1. Introduction 10

• GIMP: ∀v̄. (∃v̄1.
∧
a⊕b = c

∧
¬(a′⊕b′ = c′))→ (∃v̄2.

∧
d⊕e = f

∧
¬(d′⊕e′ = f ′)).

Contribution 4 (§5). We propose sound and complete decision procedures GSAT forGSAT

and GIMP for GIMP. Our decision procedures are implemented, optimized and certified

in Coq. Furthermore, the extracted version using Coq extraction feature is integrated and

benchmarked in HIP/SLEEK.

1.2.3 Theory of tree shares

Although decision procedures GSAT and GIMP are adequate for automatic reasoning (e.g. in

HIP/SLEEK), it is interesting to find out whether the first-order theory of 〈T,⊕〉 is decidable

so that we can develop algorithms to answer sophisticated tree share constraints. As join ⊕

is defined in term of union t and intersection u, the question can be generalized to whether

the first-order theory of 〈T,t,u, ·̄〉 is decidable. We obtained an affirmative answer to this

question together with the exact complexity class.

Contribution 5 (§6). We prove that the first-order theory of 〈T,t,u, ·̄〉 is decidable.

Furthermore, its complexity is STA(∗, 2nO(1)
, n)-complete where STA(∗, t(n), a(n)) is the

complexity class of alternating Turing machines that use t(n) time and a(n) alternations

between universal and existential states and vice-versa.

The bowtie operator ./ is critical in constructing the scaling permission, yet there is little

research on how to handle tree share constraints with bowtie automatically. In fact, we

found out that ./ is significantly more complicated than ⊕ due to its close connection to

string concatenation. Therefore, we are interested in establishing theoretical foundation for

bowtie to construct decision procedures for it. We discover that the structure 〈T\{◦}, ./〉 is

isomorphic to the string structure 〈S, ·〉 in which S is some infinitely countable alphabet and

· is the string concatenation. Hence, we are able to derive several decidability results for ./.

Contribution 6 (§7). We show that the existential theory of 〈T, ./〉 is decidable with lower

bound NP-hard and upper bound PSPACE∗. Furthermore, the first-order theory of 〈T, ./〉 is

undecidable.

∗Turing machines that use polynomial space.

Chapter 1. Introduction 11

In practical applications, the tree share ./-constraints are not always existential. As mentioned

above, it is impossible to develop complete decision procedure to handle general tree share

./-constraints and thus we are interested in finding a restriction of bowtie in which its

first-order theory is decidable. We discover that if either one of the two arguments of ./

is fixed to be constant then the decidability of its first-order theory can be recovered. In

particular, let ./τ be the τ -right-bowtie that maps each tree τ ′ to τ ′ ./ τ , i.e.:

./τ
def= λτ ′. τ ′ ./ τ.

Similarly, τ./ is the τ -left-bowtie that maps each tree τ ′ to τ ./ τ ′:

τ./
def= λτ ′. τ ./ τ ′.

Contribution 7 (§7). Let 〈T, ./τ ,τ ./〉 be the structure that contains all (infinitely many)

left and right bowties then its first-order theory is decidable. Furthermore, the complexity is

STA(∗, 2O(n), n)-complete.

The scaling permission requires the use of both ⊕ and ./ and thus their combined theory is

worth investigating. As the substructure 〈T, ./〉 is already undecidable, the combined theory

of 〈T,⊕, ./〉 therefore is also undecidable. Fortunately, we discovered a decidable fragment

in which ./ is restricted to right-bowties ./τ .

Contribution 8 (§7). Let 〈T,t,u, ·̄, ./τ 〉 be the combined structure that contains all

right-bowties then its first-order theory is decidable but its complexity is non-elementary∗.

1.3 Structure of the thesis

This thesis is organized as follows:

1. In chapter 2, we provide the formal definition of the tree share structure together with

necessary background in separation logic and program verification.

∗it is not bounded by any exponential time class nEXP.

Chapter 1. Introduction 12

2. In chapter 3, we propose a general modal logic framework using tree shares that is

capable of reasoning about sophisticated verification tasks such as doing induction over

the finiteness of the heap within the object logic or carrying out bi-abductive inference.

3. In chapter 4, we report our results on two decision procedures SAT and IMP to solve

satisfiability and entailment problem over tree shares.

4. In chapter 5, we report our results on two certified procedures GSAT and GIMP that

can additionally handle tree share disequations with improved performance.

5. In chapter 6, we establish the precise complexity result for the structure 〈T,t,u, ·̄〉.

6. In chapter 7, we prove the connection between bowtie and string concatenation. One

of the consequences is that first-order theory of 〈T, ./〉 is undecidable. We recover

the first-order decidability of ./ by restricting constants on the left (τ./) or right

(./τ). Consequently, we are able to prove the first-order complexity of two decidable

fragments 〈T,τ ./, ./τ 〉 and 〈T,t,u, ·̄, ./τ 〉.

7. In chapter 8, we draw our conclusion about the thesis and discuss several directions

for future work.

Chapter 2
Preliminaries and notations

“You see there is only one constant.

One universal. It is the only real truth.

Causality. Action, reaction. Cause and

effect.”

Merovingian, Matrix Reloaded (2003).

In this chapter, we will discuss the essential related work of the thesis. In particular, we will

provide some common knowledge and constructions about separation logic, its precursor

Hoare logic, and its successor concurrent separation logic. From this foundation, we will

further explain why and how permissions are used in program verification.

This chapter consists of three following sections:

1. § 2.1 includes basic definitions and notations in logic that will be widely used throughout

the thesis.

2. § 2.2 contains formal definitions of the tree share structure together with common

notations that will be used throughout the thesis.

3. § 2.3 provides some background over separation logic and its formal constructions.

4. § 2.4 conveys information about permission models in program verification.

13

Chapter 2. Preliminaries and notations 14

2.1 Basic definitions and notations

2.1.1 Language and structure

Language. A signature is a triple σ = (F, P, arity) in which:

1. F = {f1, . . . , fn} is the set of function symbols.

2. P = {Q1, . . . , Qm} is the set of predicate symbols.

3. arity : F ∪ P 7→ N is the arity function that specifies the number of arguments for

functions and predicates. Notice that constants are considered as nullary-function.

We will usually represent a signature as a k-tuple (ga1
1 , . . . , gakk) in which gi is either a function

or a predicate symbol and ai is its arity. We will make sure that the symbol’s type (function

or predicate) is made clear to the readers. If ai = 0, i.e. fi is a constant, then we will

simply write gi instead of g0
i . If the arity of a symbol is implicitly known, we will omit it for

convenience.

Example 2.1.1. (+2,×2, S1, <2, 0) is the signature of Peano arithmetic in which S is the

successor function, namely S(n) = n+ 1. /

Next we show in detail how σ-formulas are constructed from the signature σ. Let V =

{v1, v2, . . .} be the set of variables. Then a σ-term is either a variable v, a constant c or of

the form fk(t1, . . . , tk) in which {ti}ki=1 are σ-terms and f is a k-ary function:

term def= v | c | f(term1, . . . , termk).

An atomic σ-formula is either the equality between two σ-terms term1 = term2 or a predicate

consists of k σ-terms Q(term1, . . . , termn) in which Q is a k-ary predicate:

Atomic def= term1 = term2 | Q(term1, . . . , termn).

A first-order σ-formula is an element of the closure of atomic σ-formulas under logical

Chapter 2. Preliminaries and notations 15

connectives {∧,∨,→,¬} and quantifiers {∀,∃}:

Φ def= Atomic | ¬Φ | Φ1 ∧ Φ2 | Φ1 ∨ Φ2 | Φ1 → Φ2 | ∀v. Φ | ∃v. Φ.

For convenience, if the signature σ is implicitly known, we will omit σ prefix in all related

terms.

Theory. A variable instance v in Φ is bound if it is within the scope of some quantifier ∀v or

∃v and free otherwise. A σ-formula Φ is a sentence if it does not contain any free variables.

Example 2.1.2. Let Φ def= v = 0 ∨ ∃v. v = S(0) be a formula in (+,×, S,<, 0) then (from

left to right) the first v instance is free while the second v instance is bounded. Consequently,

Φ is not a sentence. On the other hand, Φ′ def= ∀x∃y.x < y is a sentence. /

A σ-theory is a set of σ-sentences. A σ-theory T is complete if for each sentence Φ, either Φ

or ¬Φ is in T . On the other hand, T is decidable if membership testing in T is decidable,

i.e., there is a halting Turing machine that can check whether an arbitrary sentence Φ is in

T . It is worth noting that in the context of a theory, completeness and decidability are not

equivalent.

Example 2.1.3. Let T1 the the set of all valid sentences about natural numbers. Then T1

is complete but not decidable (by Gödel Incompleteness Theorem [Göd29]). In contrast, if

T2 = ∅ then T2 is decidable but not complete for any signature σ. /

Formula hierarchy. A formula Φ is quantifier-free if it does not contain any quantifier.

Furthermore, we let Σ0 = Π0 be the sets of all quantifier-free formulas. Let Σ1 be the set of

existential formulas and Π1 be the set of universal formulas, i.e.:

• Σ1
def= {∃v1 . . . ∃vn. Φ | Φ is quantifier-free}.

• Π1
def= {∀v1 . . . ∀vn. Φ | Φ is quantifier-free}.

Generally, Σi+1 is the set of formulas ∃v1 . . . ∃vn.Φ for Φ ∈ Πi and Πi+1 is the set of formulas

∀v1 . . . ∀vn.Φ for Φ ∈ Σi:

• Σi+1
def= {∃v1 . . . ∃vn. Φ | Φ ∈ Πi}.

• Πi+1
def= {∀v1 . . . ∀vn. Φ | Φ ∈ Σi}.

Chapter 2. Preliminaries and notations 16

In short, Σn/Πn contains n − 1 alternations between ∃ and ∀ in which the outermost

quantifiers are existential/universal. A formula Φ is in Prenex normal form if Φ ∈ Σn ∪Πn

for some n. Furthermore, every formula is equivalent to a Prenex formula [Sri13].

Structure. A σ-structure is an interpretation of the symbols in the signature σ. Formally,

a σ-structure is the triple A = 〈U ,F ,P〉 such that:

1. U is the universe of discourse.

2. For each k-ary function symbol f ∈ F , there is a corresponding k-ary function

fA : Uk 7→ U in F .

3. For each k-ary predicate symbol Q ∈ P , there is a corresponding k-ary predicate

QA ⊆ Uk in P.

For simplicity, we will usually write a structure as 〈U , g1, . . . , gn〉 in which U is the universe

and each gi is either a function or a predicate.

Semantics. An interpretation I : V 7→ U is a mapping from variables to values in U . In

addition, let I[v ⇐ a] be the overriding interpretation of I at v ∈ V by a ∈ U , i.e.:

I[v ⇐ a] def= λv′. if v′ = v then a else I(v′).

For a term t, we override I(t) to be the evaluation of t, i.e.:

1. I(c) def= cA, if c is constant.

2. I(f(t1, . . . , tn)) def= fA(I(t1), . . . , I(tn)).

The structure A satisfies a formula Φ under interpretation I, denoted by (A, I) |= Φ, if Φ is

true under the evaluation of A and I:

1. (A, I) |= Q(t1, . . . , tn) iff QA(I(t1), . . . , I(tn)) ∈ P.

2. (A, I) |= t1 = t2 iff I(t1) = I(t2).

3. (A, I) |= ¬Φ′ iff (A, I) 6|= Φ′.

4. (A, I) |= Φ1 ∧ Φ2 iff (A, I) |= Φ1 and (A, I) |= Φ2

Chapter 2. Preliminaries and notations 17

5. (A, I) |= Φ1 ∨ Φ2 iff (A, I) |= Φ1 or (A, I) |= Φ2.

6. (A, I) |= Φ1 → Φ2 iff (A, I) |= ¬Φ1 ∨ Φ2.

7. (A, I) |= ∀v.Φ′ iff (A, I[v ⇐ a]) |= Φ′ for every a ∈ U .

8. (A, I) |= ∃v.Φ′ iff (A, I[v ⇐ a]) |= Φ′ for some a ∈ U .

If Φ is a sentence (i.e. without free variables) then the evaluation (A, I) |= Φ is independent

of I. As a result, we will simply write A |= Φ.

Model. The first-order theory of A, denoted by Th(A), is the set of sentences that are

satisfied by A, i.e.:

Th(A) def= {Φ | Φ is a sentence and A |= Φ}.

Let A = {Ψ1,Ψ2, . . .} be a set of sentences called axioms. A structure A is a model of A,

denoted by A |= A, if it satisfies all sentences in A. The first-order theory of A is the set of

sentences that are satisfied by all models of A:

Th(A) def= {Φ | if A |= A then A |= Φ}.

An alternative definition for Th(A) is by provability. We say Φ is provable from A (or A

proves Φ), denoted by A ` Φ, if there exists a natural deduction proof for Φ from axioms

of A. Hence Th(A) is the set of all provable sentences from A. By Gödel’s Completeness

Theorem [Sri13] which states A ` Φ iff A |= Φ, we know two definitions are equivalent.

Two σ-structures A1 and A2 are elementarily equivalent if they satisfy the same set of

first-order σ-sentences, i.e., Th(A1) = Th(A2).

Conventions. For convenience, we will usually overload a function (predicate) with its

symbol, i.e., f represents both the function symbol in σ and the function fA in A. As a

result, we will mention structures without introducing their signatures as such signatures

can be derived from the structures themselves. For the purpose of this thesis, the universe

of the structure is a part of the signature, i.e., it is also the set of constant symbols

Chapter 2. Preliminaries and notations 18

◦ ∼= ◦ • ∼= • ◦ ∼=
◦ ◦

• ∼=
• •

τ1 ∼= τ ′1 τ2 ∼= τ ′2

τ1 τ2

∼=
τ ′1 τ ′2

Figure 2.1: Canonical representation of tree shares

in the signature unless we say otherwise. Also, we may reuse some notations in different

domains as long as there is no ambiguity.

2.2 Tree share structure

We first provide the formal definition of the tree share structure in §2.2.1. Then in §2.2.2 we

proceed to introduce some common notations associated with the tree share structure that

we will use throughout the thesis.

2.2.1 Tree share domain and basic operators

Here we summarize some formal details of tree shares together with their associated properties

as proposed by Dockins et al. [DHA09].

Canonical forms. A tree share is either •, ◦ or Node(τ1, τ2) in which τ1, τ2 are tree shares

and Node is a binary function. To make the representation visual, we will refer Node(τ1, τ2)

as
τ1 τ2

. Additionally, we require tree shares are in canonical form, i.e., it is in its most

compact representation under the inductively-defined equivalence relation ∼= (Figure 2.1).

Example 2.2.1.
• • ◦

is not canonical whereas
• ◦

is canonical. /

As we will see, operations on tree shares sometimes need to fold/unfold trees to/from

canonical form, a practice we will indicate using the symbol ∼=. Canonicality is needed to

guarantee some of the algebraic properties of tree shares; managing it requires a little care

in the proofs but does not pose any fundamental difficulties.

Tree boolean operators. The connectives t and u first unfold both trees to the same

Chapter 2. Preliminaries and notations 19

shape; then calculate leafwise using the rules ◦ t τ = τ t ◦ = τ , • t τ = τ t • = •,

◦ u τ = τ u ◦ = ◦, and • u τ = τ u • = τ ; and finally refold into canonical form.

Example 2.2.2.

• ◦ ◦
t

◦ • • ◦

∼=

• ◦ ◦ ◦

t

◦ • • ◦

=

• • • ◦

∼=
• • ◦

• ◦ ◦
u

◦ • • ◦

∼=

• ◦ ◦ ◦

u

◦ • • ◦

=

◦ ◦ ◦ ◦

∼= ◦

/

To complement a tree, we simply flip leaves between ◦ and •, which does not affect canonical

form.

Example 2.2.3.

• ◦ ◦
=
◦ • •

.

/

Using these definitions we get all of the usual properties for Boolean Algebras (BAs), e.g.

τ1 u τ2 = τ1 t τ2. The complete set of their properties is in Figure 2.2.

Identity : a t ◦ = a a u • = a (2.1)
Null : a t • = • a u ◦ = ◦ (2.2)
Idempotency : a t a = a a u a = a (2.3)
Involution : a = a (2.4)
Complementary : a t a = • a u a = ◦ (2.5)
Commutativity : a t b = b t a a u b = b u a (2.6)
Associativity : (a t b) t c = a t (b t c) (a u b) u c = a u (b u c) (2.7)
Distributivity : (a u b) t c = (a t c) u (b t c) (a u b) t c = (a t c) u (b t c) (2.8)

Figure 2.2: BA axioms

The partial function ⊕ is defined in term of t and u. In short, two tree shares are joinable

Chapter 2. Preliminaries and notations 20

if their intersection is ◦ and the resulting share is their union:

a ⊕ b = c
def= a u b = ◦ ∧ a t b = c. (2.9)

In other words, the join relation is a kind of disjoint union; it is partial because e.g. • ⊕ •

is undefined. One critical property of ⊕ that we would like to highlight is the disjointness

axiom that distinguishes the tree shares from rationals:

∀x, y. x⊕ x = y → x = y.

Using other properties of tree shares in Figure 2.3, we can prove a stronger version in which

x, y must be identity ◦:

∀x, y. x⊕ x = y → x = y = ◦.

Proof. Let x⊕ x = y then x = y and thus x⊕ x = x. On the other hand, ◦ ⊕ x = x and by

cancellation rule in Fig. 2.3, we conclude that x = ◦.

Hence the axiom says that the only element that can be joined with itself is the identity ◦. In

contrast, rational model Q = 〈[0, 1],+〉 does not admit this axiom, e.g., 0.3 + 0.3 = 0.6 but

0.3 6= 0.6. Using ⊕ we require the following relationship between the spatial conjunction ∗

and fractional mapping, namely one can split the permission π1⊕ π2 of a fractional mapping

into two sub-permissions π1 and π2:

x
π17→ y ∗ x π27→ z a` y = z ∧ x π1⊕π27−→ y. (2.10)

Example 2.2.4. As
◦ •

⊕
• ◦

= •, the following bi-entailment holds:

x
•7−→ v a` x

◦ •
7−−−→ v ∗ x

• ◦
7−−−→ v.

/

Chapter 2. Preliminaries and notations 21

Functional : x⊕ y = z1 → x⊕ y = z2 → z1 = z2 (2.11)
Commutativity : x⊕ y = y ⊕ x (2.12)
Cancellation : x1 ⊕ y = z → x2 ⊕ y = z → x1 = x2 (2.13)
Unit : ∃u. ∀x. x⊕ u = x (2.14)
Disjointness : x⊕ x = y → x = y (2.15)
Cross split : a⊕ b = z ∧ c⊕ d = z → ∃ac, ad, bc, bd.

ac⊕ ad = a ∧ bc⊕ bd = b ∧ ac⊕ bc = c ∧ ad⊕ bd = d (2.16)

a b ac
ad bd

bcc
d

Infinite Splitability : x 6= ◦ → ∃x1, x2. x1 6= ◦ ∧ x2 6= ◦ ∧ x1 ⊕ x2 = x (2.17)

Figure 2.3: Properties of ⊕ which follow from BA axioms in Figure 2.2

Properties of tree multiplication ./. In addition to ⊕, Dockins et al. also invented

another operator ./ called “bowtie” which is analogous to rational multiplication. Given two

tree shares τ1, τ2, we compute τ1 ./ τ2 by replacing each black leaf • in τ1 with an instance

of τ2, which bears a resemblance to the string replacement operator.

Example 2.2.5.

• ◦ •
./
◦ •

=

◦ • ◦ ◦ •

.

/

To summarize, bowtie is an injective cancellative monoid with addition properties (Figure 2.4)

in which • is the identity element (for comparison, ◦ is the identity of ⊕). Not like

multiplication, bowtie is not commutative (Example 2.2.6) although it is left-distributive

over t and u.

Example 2.2.6.

• ◦
./
◦ •

=
◦ • ◦

6=
◦ • ◦

=
◦ •

./
• ◦

.

/

Chapter 2. Preliminaries and notations 22

Associativity : τ1 ./ (τ2 ./ τ3) = (τ1 ./ τ2) ./ τ3 (2.18)
Identity element : τ ./ • = • ./ τ = τ (2.19)
Zero element : τ ./ ◦ = ◦ ./ τ = ◦ (2.20)
Left cancellation : τ 6= ◦ → τ ./ τ1 = τ ./ τ2 → τ1 = τ2 (2.21)
Right cancellation : τ 6= ◦ → τ1 ./ τ = τ2 ./ τ → τ1 = τ2 (2.22)
Left distributivity over u : τ1 ./ (τ2 u τ3) = (τ1 ./ τ2) u (τ1 ./ τ3) (2.23)
Left distributivity over t : τ1 ./ (τ2 t τ3) = (τ1 ./ τ2) t (τ1 ./ τ3) (2.24)

Figure 2.4: Properties of ./

From the two left distributive properties over t,u, we can directly derive the left distributive

property for ⊕:

∀τ, τ1, τ2. τ ./ (τ1 ⊕ τ2) = (τ ./ τ1) ⊕ (τ ./ τ2) (2.25)

Proof. Suppose τ1 ⊕ τ2 = τ3 then τ1 t τ2 = τ3 and τ1 u τ2 = ◦. By the left distributivity

rules, we have:

1. (τ ./ τ1) t (τ ./ τ2) = τ ./ (τ1 t τ2) = τ ./ τ3, and

2. (τ ./ τ1) u (τ ./ τ2) = τ ./ (τ1 u τ2) = τ ./ ◦ = ◦.

Hence (τ ./ τ1)⊕ (τ ./ τ2) = τ ./ τ3.

In the original paper [DHA09], this operator is mainly used to split a tree τ into two trees

τ = τl ⊕ τr s.t. τl = τ ./
◦ •

and τr = τ ./
• ◦

(by Prop. 2.25). Although it was used

in metatheory [ADH+14], no decision procedure over bowtie has been developed due to its

complexity and the absence of theoretical foundation.

2.2.2 Tree share notations

Here we introduce some standard definitions and notations for tree shares besides those

definitions provided in Chapter 1. Let T be the tree share domain. Then the height of a tree

Chapter 2. Preliminaries and notations 23

τ ∈ T, denoted by |τ |, is the length of the longest path from its root to leaves:

| • | = | ◦ | def= 0 |
τ1 τ2

| def= max (|τ1|, |τ2|) + 1.

Generally, |Φ| is the height of the formula Φ, i.e., the height of the highest tree in Φ:

|Φ| def= max {|τ | | τ ∈ Φ}.

Example 2.2.7. Here we have several examples about tree height. If a formula does not

contain any tree then its height is zero.

1. |
• ◦

| = 1 and |
• ◦ •

| = 2.

2. |∃v. v = •| = |∀x∀y∃z. x⊕ y = z| = 0 and |∃x. x = • ∨ x =
◦ • ◦

| = 2.

/

Next, we define the split function that splits a tree τ into its left and right subtree:

Split(•) def= (•, •) Split(◦) def= (◦, ◦) Split(
τl τr

) def= (τl, τr).

Example 2.2.8.

Split(
• ◦ •

) = (
• ◦

, •).

/

The function Split is useful when reasoning about properties of recursive functions defined

over tree shares, e.g., properties about height, t and u. More precisely, many properties

over tree shares can be defined in term of their left and right subtrees, and so we can make

use of Split for a systematic reasoning by induction.

Lemma 2.2.1 (Properties of Split). The function Split satisfies the following properties:

1. If |τ | > 0 and Split(τ) = (τ1, τ2) then |τ1| < |τ | and |τ2| < |τ |.

Chapter 2. Preliminaries and notations 24

2. If |τ | = 0 then Split(τ) = (τ, τ).

3. Split is a bijection from T to T2.

4. Let Split(τi) = (τ li , τ ri) for i = 1, 2, 3 and ? ∈ {t,u,⊕} then:

τ1 ? τ2 = τ3 iff τ l1 ? τ
l
2 = τ l3 ∧ τ r1 ? τ

r
2 = τ r3 .

/

Proof. 1 and 2. Follow directly from the definition of Split and height.

3. We need to show Split is both injective and surjective which is done by strong induction

on n = max (|τ1|, |τ2|).

4. It suffices to prove the case ? = t as the other two are similar. Again, this can be done by

strong induction on n = max (|τ1|, |τ2|, |τ3|).

Example 2.2.9. Let τ1 =

◦ • ◦ •

, τ2 =
• ◦

and τ3 =
• ◦ •

. Then:

1. τ1 t τ2 =

◦ • ◦ •

t
• ◦

=
• ◦ •

= τ3.

2. Split(τ1) = (
◦ •

,
◦ •

), Split(τ2) = (•, ◦), Split(τ3) = (•,
◦ •

).

3. τ l1 t τ l2 =
◦ •

t • = • = τ l3 and τ r1 t τ r2 =
◦ •

t ◦ =
◦ •

= τ r3 .

/

Lemma 2.2.2 (Proof framework). We propose a general and systematic framework to prove

properties over tree shares using Split. Suppose we need to prove

∀τ1 . . . ∀τn. P (τ1, . . . , τn)

over n tree share variables {τi}ni=1. It suffices to prove two cases:

C1. P (τ1, . . . , τn) holds for all (τ1, . . . , τn) ∈ {•, ◦}n.

Chapter 2. Preliminaries and notations 25

C2. P (τ l1, . . . , τ lm)∧P (τ r1 , . . . , τ rm)⇒ P (τ1, . . . , τm), where Split(τi) = (τ li , τ ri) for i = 1 . . .m.

/

Proof. We show that if the two properties hold then one can prove ∀τ1 . . . ∀τm. P (τ1, . . . , τm)

by strong induction over n = max (|τ1|, . . . , |τm|). The base case n = 0 is clear from C1.

Suppose P holds for all n ≤ k and we want to prove P also holds for n = k + 1 > 0. Using

C2, it suffices to prove

P (τ l1, . . . , τ lm) and P (τ r1 , . . . , τ rm).

Let n1 = max (|τ l1|, . . . , |τ lm|) and n2 = max (|τ r1 |, . . . , |τ rm|). By Lemma 2.2.1, we deduct that

n1 ≤ k and n2 ≤ k. Hence the result follows from the induction hypothesis.

2.3 Separation logic

In §2.3.1, we will discuss about Hoare logic which is the precursor of Separation logic.

We then make a transition to Separation logic in §2.3.2 and finally discuss its extension,

Concurrent Separation logic, in §2.3.3.

2.3.1 Hoare logic

Hoare rules. Hoare logic is a formal logic framework developed by Floyd [Flo67] and Hoare

[Hoa69] for program verification. To make it simple, we limit our discussion to the toy

language L1 in Figure 2.5.

e
def= . . . ,−1, 0, 1, . . . | v | e1 + e2 | e1 − e2 | e1 × e2 | e1 div e2 | e1 mod e2

b
def= e1 = e2 | e1 < e2 | NOT b | b1 OR b2 | b1 AND b2

c def= skip | x := e | if b then c1 else c2 | while b do c | c1 ; c2

Figure 2.5: A simple language L1

Here e is the arithmetic expression, b is Boolean expression and c is the command. The skip

command does nothing, x := e assigns the value e to variable x, if . . .else and while. . .do

Chapter 2. Preliminaries and notations 26

are for control flow. The following assertion language helps capture the semantics of these

commands, which consists of standard comparisons between two expressions together with

Boolean connectives (Figure 2.6).

P
def= > | ⊥ | e = e | e < e | ¬P | P1 ∧ P2 | P1 ∨ P2 | ∀x. P | ∃x. P.

Figure 2.6: Assertion language for Hoare logic

The key concept in Hoare logic is the Hoare triple {P} c {Q} in which P is the precondition,

c is the executed code and P is the postcondition. Simply put, {P} c {Q} is interpreted

as ‘given the precondition P then executing the code c will result in the postcondition

Q’. In practice, P and Q are assertion predicates capture the program states which carry

information about variable assignments. Thus c can be viewed as the transition action that

changes the state P into the state Q and the Hoare triple can be viewed as a compact and

elegant way to describe such behaviors. The simplest Hoare rule is Skip which says the

precondition and postcondition are the same for command skip:

{P} skip {P} Skip

A more complicated one is the rule for assignment:

{P [e⇐ x]} x := e {P}
Assign

Here P [e⇐ x] represents the predicate P whose free variable x is replaced by expression e.

Informally, the rule Assign says that given the precondition P [e⇐ x] in which x is replaced

by e (possibly contains x) then the postcondition is simply P , e.g.:

{x+ 1 = 2} x := x+ 1 {x = 2} Assign

On the other hand, the rule Consequence gives us the flexibility to strengthen the precondition

or weaken the postcondition:

P ⇒ P ′ {P ′} c {Q′} Q′ ⇒ Q

{P} c {Q} Consequence

Chapter 2. Preliminaries and notations 27

{P1} c {Q1} {P2} c {Q2}
{P1 ∧ P2} c {Q1 ∧Q2}

Conjunction

P ⇒ P ′ {P ′} c {Q′} Q′ ⇒ Q

{P} c {Q} Consequence

{P} c1 {Q} {Q} c2 {R}
{P} c1; c2 {R}

Composition

{P} skip {P} Skip

{P [x⇐ e]} x := e {P} Assign

{P ∧ b} c1 {Q} {P ∧ ¬b} c2 {Q}
{P} if b then c1 else c2 {Q}

If

{I ∧ b} c {I} I is the loop invariant
{I} while b do c {I ∧ ¬b} While

Figure 2.7: Hoare rules

In addition, we have rules for control flow commands (if . . . else and while . . . do). The

full rule set is listed in Figure 2.7. One highlight in the While rule is the introduction of

the loop invariant I. The triple {I ∧ b} c {I} says that the predicate I remains unchanged

under the effect of command c as long as Boolean expression b is still true. An important

feature in Hoare logic is the Composition rule that makes the reasoning compositional:

{P} c1 {Q} {Q} c2 {R}
{P} c1; c2 {R}

Composition

Using Composition, the reasoning of the whole program is achieved in a command-by-

command manner in which the postcondition of the previous command becomes the precon-

dition of the next command. The following example demonstrates how several rules are used

compositionally:

{x = 1} skip {x = 1} Skip
x = 1⇒ x+ 1 = 2

{x = 1} skip {x+ 1 = 2} Consequence {x+ 1 = 2} x := x+ 1 {x = 2} Assign

{x = 1} skip;x := x+ 1 {x = 2} Composition

Chapter 2. Preliminaries and notations 28

Semantics. While it is nice to have Hoare rules for reasoning, it is even more important to

justify their correctness. Consider the case when someone proposes a different Skip rule:

{P} skip {⊥} Better_skip

If we ignore its correctness, Better_skip is actually a very powerful rule. From the fact that

anything can be proved from ⊥, we can show that {P} skip; c {Q} holds for any c, P , Q.

Intuitively, we do not use this rule because it seems unreasonable. In other words, the rules

do not make sense on their own but rather on the model that they reflect.

The standard model for Hoare rule makes use of a program state ρ : V ⇁ D which is a

partial function from variables to (integer or boolean) values. Also it is conventional to call ρ

alone a stack. A configuration is a pair (ρ, c) of program state ρ and command c, and a step

relation (ρ1, c1) (ρ2, c2) is a binary relation of configurations. In short, (ρ1, c1) (ρ2, c2)

indicates the change of state from ρ1 to ρ2 when the command is changed from c1 to c2.

The main purpose of step relation is to formally describe the behavior of the command based

on the underlying model. Similar to Hoare rules, step relations are described in the form of

rule base with side conditions. For instance, the step relation for Assign is called SAssign:

[|e|]ρ = v ρ′ = ρ[x⇐ v]
(ρ, x := e; c) (ρ′, c) SAssign

Here we use the syntactic sugar [|e|]ρ to indicate the evaluation of (arithmetic or boolean)

expression e by program state ρ (which is simply an application of term evaluation described

in §2.1.1). Furthermore ρ[x⇐ v] is the overriding state of ρ at x by value v. SAssign says

that the state ρ after the assignment x := e is updated at x by the evaluation of e. A

complete description of the step relation is mentioned in Figure 2.8.

We are now ready to define the Hoare triple in term of small step relation in a continuation

style proposed by Appel and Blazy [AB07] (Figure 2.9). The predicate isSafe(Γ) means the

configuration Γ is safe, i.e., either there exists another configuration Γ′ that Γ can connect to

using small step relation, or the configuration Γ contains an empty program. The condition

Chapter 2. Preliminaries and notations 29

(ρ, skip; c) (ρ, c) SSkip

[|e|]ρ = v ρ′ = ρ[x⇐ v]
(ρ, x := e; c) (ρ′, c) SAssign

[|b|]ρ = >
(ρ, if b then c1 else c2; c) (ρ, c1; c) SIf1

[|b|]ρ = ⊥
(ρ, if b then c1 else c2; c) (ρ, c2; c) SIf2

[|b|]ρ = >
(ρ,while b do c1; c) (ρ, c1; while b do c1; c) SWhile1

[|b|]ρ = ⊥
(ρ,while b do c1; c) (ρ, c) SWhile2

Figure 2.8: Step relation for Hoare logic

guarded(P, c) asserts that command c is guarded by predicate P , i.e., all state ρ satisfying

P must be safe with respect to command c. Finally, {P} c {Q} means for all commands

c′ guarded by postcondition Q, its composition with c, i.e. c; c′, is therefore guarded by

precondition P .

isSafe(Γ) def= ∃Γ′. Γ Γ′ ∨ ∃ρ. Γ = (ρ, ∅)

guarded(P, c) def= ∀σ. σ |= P → isSafe(σ, c)

{P} c {Q} def= ∀c′. guarded(Q, c′)→ guarded(P, c; c′)

Figure 2.9: Semantics of Hoare triple

One may ask why we would prefer to reason axiomatically over the Hoare rules rather

than directly over the step relations. The answer is quite simple: Hoare rules are usually

significantly more compact and meaningful than the step relations in term of capturing

the high-level properties of the verified program. In step relation, we need to keep track of

the program state which may contain hundreds of variables and yet it does not reflect any

significance about the program semantic. In contrast, the Hoare rules allow us to abstract

away the program state while they are still capable of expressing the desirable properties of

the program. Thus the proof rule approach yields a more efficient computation framework

that can be deployed into automatic tools. On the other hand, the step relation serves as an

Chapter 2. Preliminaries and notations 30

important ingredient for the soundness proof of the Hoare rules:

Proposition 2.3.1 ([Hoa69]). The set of Hoare rules in Figure 2.7 are sound with respect

to the step relation in Figure 2.8, i.e., any derivable Hoare triple is valid. /

2.3.2 Separation logic

The main disadvantage of Hoare logic is the lack of reasoning support over memory manipu-

lation commands, e.g., the function malloc() in C. To tackle this problem, Reynolds [Rey02]

and O’Hearn [IO01] introduced Separation logic (SL) which is extended from Hoare logic

with shape analysis to reason about memory. Its inception is inspired by the pointer aliasing

problem:

{x 7→ 42 ∧ y 7→ 42} [x] := 1 {?}

Here we leave the postcondition with the question mark ? because the correct answer is not

unique. Ideally, if x and y refer to two different addresses then the postcondition is easy

to spot: x 7→ 1 ∧ y 7→ 42. However, x and y could be aliasing, i.e., they refer to the same

address. If that is the case then we have the postcondition x 7→ 1∧ y 7→ 1. One ugly solution

is to enumerate all possible scenarios in the postcondition, i.e.:

(x 7→ 1 ∧ y 7→ 42 ∧ x 6= y) ∨ (x 7→ 1 ∧ y 7→ 1 ∧ x = y).

However, this solution will compute an exponential size formula with respect to the number

of pointers and thus is not practical for large programs. Even worse, checking pointer aliasing

is undecidable as y can be replaced with arbitrary terms consisting of complicated functions

and thus the undecidability follows immediately from Rice’s theorem [Ric53].

An elegant solution to this problem is the introduction of separating conjunction ∗ that

gave birth to SL, e.g., x 7→ 42 ∗ y 7→ 42 asserts x and y are disjoint memory addresses.

Consequently, the postcondition can be identified as x 7→ 1 ∗ y 7→ 10 as there is no confusion

between x and y.

Language and rules. To make use of all beautiful features of SL, we extend our toy

Chapter 2. Preliminaries and notations 31

e
def= . . . ,−1, 0, 1, . . . | v | e1 + e2 | e1 − e2 | e1 × e2 | e1 div e2 | e1 mod e2

b
def= e1 = e2 | e1 < e2 | NOT b | b1 OR b2 | b1 AND b2

c def= skip | x := e | if b then c1 else c2 | while b do c | c1 ; c2 |
[e1] := e2 | x := [e] | x := new(e) | free(e)

Figure 2.10: A simple language L2 for SL

language L1 in Figure 2.5 to L2 in Figure 2.10 that contains four extra memory-related

commands. The store command [e1] := e2 updates the value at address e1 with e2 while

the load command x := [e] assigns whatever value at address e to variable x. The new

command x := new(e) is used to assign x with a fresh address whose stored value is e and

free command free(e) is for the deallocation of address e.

On the other hand, the assertion language in Figure 2.6 is extended to contain emp, 7→

and ∗ for heap (memory) reasoning in Figure 2.11. Informally, emp represents the empty

heap, e1 7→ e2 is the maps-to predicate of single address e1 with value e2, and P1 ∗P2 asserts

that the heap can be split into two disjoint heaps that satisfy P1 and P2. For instance,

x 7→ 1 ∗ y 7→ 1 is satisfied by a heap that contains exactly two distinct addresses x and y

whose stored values are both 1.

P
def= > | ⊥ | e = e | e < e | ¬P | P1 ∧ P2 | P1 ∨ P2 | ∀x. P | ∃x. P |

emp | e1 7→ e2 | P1 ∗ P2.

Figure 2.11: Assertion language for separation logic

One important rule is the Frame rule for local reasoning:

{P} c {Q}
{F ∗ P} c {F ∗Q} Frame

In short, this rule states that the frame predicate F can be ignored when proving the

postcondition Q if the precondition P is already sufficient. As a result, verification tools

are able to concentrate on just the modified state of the machine rather than the complete

Chapter 2. Preliminaries and notations 32

{P [x⇐ v] ∧ e 7→ v} x := [e] {P ∧ e 7→ v} Load

e1 ⇓ v1 e2 ⇓ v2
{e1 7→ _} [e1] := e2 {v1 7→ v2}

Store

e ⇓ v
{emp} x := new(e) {x 7→ v} New

{e 7→ _} free(e) {emp} Free

Figure 2.12: Memory-related rules for Separation logic where e ⇓ v asserts v is the
evaluation of the expression e.

state. For comparison, if ∗ is replaced by ∧ then Frame becomes unsound as justified by the

example at the start of this subsection:

{P} c {Q}
{F ∧ P} c {F ∧Q} Unsound_frame

One beautiful feature of SL is that all Hoare rules in Figure 2.9 can be reused. Furthermore,

we have four more rules for the additional memory commands in Figure 2.12. The Load rule

is similar to Assign in Figure 2.7 except x is updated by the stored value v of address e. The

Store rule says that the stored value of address e1 is updated to e2 after the execution of

[e1] := e2. In the precondition, e ⇓ v indicates that the expression e is evaluated to value

v. This is to handle the case where both e1 and e2 contain some common variables, e.g.,

[x] := new(x+ 1). Also we use the syntactic sugar e1 7→ _ to mean the address e1 is already

allocated, i.e., e1 7→ _ def= ∃v. e1 7→ v. For New, the postcondition x 7→ v means the stored

value at fresh address x is assigned to v. Finally, the Free rule allows us to free the address e.

Semantics. The model for SL is extended from the Hoare model by including two additional

components to the program state, namely a heap h : Addr ⇁ Val which is a partial function

from addresses to values, and a break brk ∈ N that stores the maximal address used by the

program. The sole purpose of brk is to implement the constructor Con for fresh address

required by command new(), i.e., Con(x) will increase the value of brk by one and assign

Chapter 2. Preliminaries and notations 33

(ρ, h, brk) |= emp def= dom(h) = ∅

(ρ, h, brk) |= e1 7→ e2
def= [|e1|]ρ = v1 ∧ [|e2|]ρ = v2 ∧

dom(h) = {v1} ∧ h(v1) = v2

(ρ, h, brk) |= P ∗Q def= ∃h1∃h2. h1] h2 = h ∧
(ρ, h1, brk) |= P ∧ (ρ, h2, brk) |= Q

Figure 2.13: Semantics of assertion language for SL

that value to x. As a result, a configuration Γ is a triple (ρ, h, brk) of stack ρ, heap h and

break brk.

For a heap h, we denote its domain as dom(h) which is a subset of Addr. Two heaps h1 and

h2 are disjoint, denoted by h1 ⊥ h2, if their domains are disjoint, i.e., dom(h1)∩dom(h2) = ∅.

The joint heap h of two disjoint heap h1 and h2, denoted by h = h1] h2, is the combined

heap of h1 and h2, i.e.:

h = h1] h2
def=

dom(h1) ∩ dom(h2) = ∅,

dom(h) = dom(h1) ∪ dom(h2),

h(a) = h1(a) if a ∈ dom(h1),

h(a) = h2(a) if a ∈ dom(h2).

The semantics for heap-related predicates is formally defined in Figure 2.13. The emp

predicate is satisfied by the empty heap. The map predicate e1 7→ e2 is satisfied by a

single-cell heap at address e1. The star predicate P ∗Q says that the heap can be partitioned

into two disjoint heaps that satisfy P and Q respectively.

The next ingredient for SL semantics is the formation of step relation to capture the behavior

of each individual command. The step relation for basic commands in Figure 2.8 is reused

with a small change of state representation: we replace the old state ρ with the new state

κ = (ρ, h, brk). As a result, the new configuration is a pair (κ, c) of program state κ and

command c. In Figure 2.14, we describe the step relation for heap-related commands. The

Chapter 2. Preliminaries and notations 34

κ = (ρ, h, brk) κ′ = (ρ′, h, brk)
[|e|]ρ = v v ∈ dom(h) ρ′ = ρ[x⇐ h(v)]

(κ, x := [e]; c) (κ′, c) SLoad

κ = (ρ, h, brk) κ′ = (ρ, h′, brk)
[|e1|]ρ = v1 [|e2|]ρ = v2 v1 ∈ dom(h) h′ = h[v1 ⇐ v2]

(κ, [e1] := e2; c) (κ′, c) SStore

κ = (ρ, h, brk) κ′ = (ρ′, h′, brk + 1)
[|e|]ρ = v ρ′ = ρ[x⇐ brk] h′ = h[brk⇐ v]

(κ, x := new(e); c) (κ′, c) SNew

κ = (ρ, h, brk) κ′ = (ρ, h′, brk)
[|e|]ρ = v h′ = h[v ⇐ None]

(κ, free(e); c) (κ′, c) SFree

Figure 2.14: Semantics of small step relation for heap-related commands

step SLoad updates the stack variable x with the stored value at address e. The step SStore

updates the stored value at the heap address e1 with e2. The step SNew updates the stack

variable x with brk and heap address brk with stored value e. Furthermore, it also increases

the value of the break brk by one. Lastly, the step SFree frees the address e in the heap.

Here we use the syntactic sugar h[v ⇐ None] to indicate the address v in h is deallocated.

We are now ready to define the semantics of the Hoare SL triple {P} c {Q} (Figure 2.15) which

is a modified version of the triple in Figure 2.9. The predicate isSafe(Γ) and guarded(P, c)

remain unchanged. They say that the configuration Γ is safe and the command c is guarded

by P respectively. The condition closed(F, c) basically asserts the independence between

command c and predicate F , i.e., c does not affect the validity of F . Finally, the SL triple

{P} c {Q} is defined similarly to the Hoare triple in Figure 2.9 except it also reflects the

presence of the frame predicate F . One may ask why we do not simply reuse the definition in

Figure 2.15 but rather choose to make all these complicated changes. The answer is simple:

these changes are essential to guarantee the correctness of the Frame rule.

Remark. Other than the separating conjunction ∗, we also have other separating connectives

Chapter 2. Preliminaries and notations 35

isSafe(Γ) def= ∃Γ′. Γ Γ′ ∨ ∃κ. Γ = (κ, ∅)

guarded(P, c) def= ∀κ κ |= P → isSafe(κ, c)

closed(F, c) def= ∀v. modified(c, v)→ ∀h∀ρ∀brk. [(ρ, h, brk) |= P →
∀n. (ρ[v ⇐ n], h, brk) |= F]

{P} c {Q} def= ∀c′∀F. closed(F, c)→ guarded(F ∗Q, c′)→ guarded(F ∗ P, c; c′)

Figure 2.15: Semantics of Hoare SL triple

(ρ, h, brk) |= P ∪∗ Q def= ∃h1∃h2∃h3. h1] h2] h3 = h ∧
(ρ, h1] h2, brk) |= P ∧ (ρ, h2] h3, brk) |= Q

(ρ, h, brk) |= P−∗Q def= ∀h1. (h ⊥ h1 ∧ (ρ, h1, brk) |= P) → (ρ, h] h1, brk) |= Q

(ρ, h, brk) |= P −⊕ Q
def= ∃h1. h1 ⊥ h ∧ (ρ, h1, brk) |= P ∧ (ρ, h] h1, brk) |= Q

Figure 2.16: Semantics of separating connectives

such as the overlapping ∪∗ and two magic wands −∗,−⊕ :

P
def= . . . | P1 ∪∗ P2 | P1−∗P2 | P1 −⊕ P2.

The semantics of these operators are formally defined in Figure 2.16. In particular, P ∪∗ Q

says that we can split the heap into two overlapping heaps, h1] h2 and h2] h3, that satisfy

P and Q respectively. The universal magic wand P−∗Q means that for any heap h1 that

satisfies P and can be joined with the current heap then their combined heap will satisfy Q.

On the other hand, the existential magic wand P −⊕ Q asserts there exists a heap h1 that

satisfies P and can be combined with the current heap to satisfy Q.

The magic wand −∗ was first proposed by Reynolds [Rey02] to reason about imperative

programs with shared mutual data structure like lists and trees. One interesting property of

this operator is its adjoint relationship with ∗:

P ∗Q ` R iff P ` Q−∗R.

Chapter 2. Preliminaries and notations 36

Here the entailment ` is defined via semantics, i.e., P1 ` P2
def= ∀κ. κ |= P1 → κ |= P2.

Furthermore, if the entailment happens to be bi-directional, we will refer to it as P1 a` P2.

Proof. ⇒ direction: For simplicity, we assume program state only contains the heap compo-

nent. Let h |= P . Then we need to show h |= Q−∗R. It is equivalent to show that for some

h1 s.t. h1 ⊥ h and h1 |= Q then h1] h |= R. By definition of ∗, we derive h] h1 |= P ∗Q.

Hence by the premise P ∗Q ` R, we conclude h] h1 |= R.

⇐ direction: Let h |= P ∗Q. Then there exist h1, h2 s.t. h = h1] h2, h1 |= P and h2 |= Q.

From the premise P ` Q−∗R, we conclude h1 |= Q−∗R. As h2 |= Q, we have h1] h2 |= R

by definition of −∗. Hence the result follows.

The other two operators overlapping ∪∗ and existential magic wand −⊕ are used by Hobor

and Villard [HV13] to reason about programs with graph-like structures. In their setting,

the spatial graph can be specified recursively using ∪∗ in which the overlapped parts among

sub-graphs are not specified:

graph(x) ⇔ (x = 0 ∧ emp) ∨ ∃d∃l∃r. x 7→ (d, l, r) ∪∗ graph(l) ∪∗ graph(r).

Their main contribution is the invention of the ramify rule together with a proof system

to help reason about overlaid data structures. This rule allows an effective transition from

reasoning over SL formulas to reasoning over mathematical graph formulas:

{P} c {Q} R ` (P ∗ (Q −∗ R′))
{R} c {R′}

Ramify

2.3.3 Concurrent separation logic

Concurrent separation logic (CSL), proposed by O’Hean [OHe07], is an extension of separation

logic to reason about correctness of concurrent programs. One key feature of CSL is the

parallel composition c1 || c2 which says two commands c1 and c2 are executed concurrently.

For convenience, we usually call c1 and c2 as concurrent threads, i.e., the entities that the

commands refer to. To reason about the semantics of ‖, CSL has the Parallel rule which says

Chapter 2. Preliminaries and notations 37

that if two threads are independent of each other then the reasoning is modular:

{P1} c1 {Q1} fv(c1, P1, Q1) ∩modified(c2) = ∅
{P2} c2 {Q2} fv(c2, P2, Q2) ∩modified(c1) = ∅

{P1 ∗ P2} c1 || c2 {Q1 ∗Q2}
Parallel

Here fv(c, P,Q) is the set of free variables in predicates P , Q and command c whereas

modified(c) is the set of variables whose values are changed by the command c. For example,

the following code segment describes the behavior of two concurrent threads that update the

two addresses 1 and 2 with stored value 42:

{1 7→ _} [1] := 42 {1 7→ 42} Store {2 7→ _} [2] := 42 {2 7→ 42} Store

{1 7→ _ ∗ 2 7→ _} [1] := 42 ‖ [2] := 42 {1 7→ 42 ∗ 2 7→ 42} Parallel

Unfortunately, it is often the case that we require certain communication amongst concurrent

threads so that they can cooperate to achieve a common goal. The means of such commu-

nication is called resource, which is a fragment of memory shared among threads. In SL,

resources are usually represented by a SL predicate, i.e., x 7→ 1 is the resource of a single

address while list(x) is a list resource whose head is at address x:

list(x) def= (x = 0 ∧ emp) ∨ ∃d∃n. x 7→ (d, n) ∗ list(n).

A race condition happens when several threads attempt to access the same resource. For

instance, the following code segment has two concurrent threads that want to access the

stored value in address x:

[x] := 1; y := [x] + 1 ‖ [x] := 2; skip

In the example above, we are interested in deriving the value of y of the first thread. Without

the presence of the second thread, the answer is straightforward: y should be 2 because the

stored value in x is set to 1 by previous command. Unfortunately, the second thread can

interfere by updating the store value of x to 2 before the assignment of y is executed. As

Chapter 2. Preliminaries and notations 38

a result, it is possible that the value of y is 3. One standard solution is to ‘guard’ x using

semaphore or lock mechanism so that only one thread can access to x at a time, giving us

the guarantee that y has value 2.

A formal semantics for CSL is out of the scope of this thesis. Instead we would like

to briefly discuss the related literature review. The semantics of CSL was first defined

by Brookes [Bro06, Bro07a] using trace semantics on a simplified language together with

the soundness proof. Subsequently an alternative semantics of CSL was proposed by

Hayman [HW06] using Petri nets or Calcagno et al. [COY07] on abstract separation algebras.

Hobor et al. [Hob08, HAZ08] extended the operational semantics to reason about first-

class locks, i.e., locks that can be constructed and destroyed at runtime. Vafeiadis [Vaf11]

presented a soundness proof for CSL in terms of standard operation semantics in which

permissions are included inside the heap to reason about resource sharing.

A major disadvantage of CLS is the problem of synchronization, i.e., its lack of expressiveness

to reason about synchronous values. Assuming the interleaving semantics (i.e. threads are

scheduled to run for certain time interval), we consider the following example:

{x = 0}

x := x+ 1 ‖ x := x+ 2

{??}

y := x

We are interested in finding the postcondition after ‖. After two concurrent threads execute

the commands x := x+ 1 and x := x+ 2, the value of x is assigned to y. The predicate in

the precondition specifies the value of x to be 0 initially. Despite the interleaving effect, after

‖ there is only one choice for the value of x which is 3. However, the strong assumptions in

Parallel that two threads are independent prevent us from deriving that result. Furthermore,

the use of lock or semaphore can significantly increase the overhead cost and thus hurts

performance. To overcome these problems, Vafeiadis and Parkinson [VP07] proposed a flexible

Chapter 2. Preliminaries and notations 39

(κ, c1) (κ′, c′1)
(κ, (c1 || c2); c) (κ′, (c′1 || c2); c) LPar

(κ, c2) (κ′, c′2)
(κ, (c1 || c2); c) (κ′, (c1 || c′2); c) RPar

(κ, (skip || skip); c) (κ, skip; c) SkipPar

(κ, c1) abort
(κ, (c1 || c2); c) abort LAPar

(κ, c2) abort
(κ, (c1 || c2); c) abort RAPar

Figure 2.17: Small step relation for parallel composition in [Vaf11]

logic called RGSep which is the combination between Rely/Guarantee approach [Jon83] and

CSL. He demonstrated the usefulness of RGSep in verifying fine-grained concurrent program

among cooperative threads [Vaf07], i.e., threads that agree on the order of certain executions.

RGSep is the underlying logic in automatic reasoning tools such as SmallFootRG [CPV07]

and CAVE [Vaf09].

We seal this subsection with a discussion about the small step relation for the parallel

composition operator in [Vaf11]. Let abort be a special dead-end configuration that indicates

the execution went wrong (e.g. a thread tries to read an invalid memory cell) then Fig. 2.17

provides details of the small step relation of ||. It is worth noting that two rules LAPar and

RAPar are defined in a cautious manner: we can reach the dead-end configuration as soon as

one of the component commands gets stuck.

2.4 Permission models

In concurrent programming, it is often the case that a given resource (e.g. a list or a binary

tree) is shared among several threads for mutual computation. For instance, a list is shared

Chapter 2. Preliminaries and notations 40

between two threads where one finds the minimal element while the other computes the

maximal element. As a result, threads need either ‘read’ or ‘write’ access to the shared

resource. However, the core of CSL is too restrictive to serve for this purpose. Consider the

following Hoare triple that reasons about race condition:

{a 7→ 42 ∗ x 7→ _ ∗ y 7→ _}

[x] := [a] || [y] := [a]

{a 7→ 42 ∗ x 7→ 42 ∗ y 7→ 42}

We have the situation when both threads want to access to address a and both address x

and y are updated with the stored value in a. To deduce the postcondition, we apply the

Load rule to each thread individually∗:

{a 7→ 42 ∗ x 7→ _}
[x] := [a]

{a 7→ 42 ∗ x 7→ 42}

Load {a 7→ 42 ∗ y 7→ _}
[y] := [a]

{a 7→ 42 ∗ y 7→ 42}

Load

However, when we try to apply the Parallel rule, both the precondition and postcondition

contain a 7→ 42 ∗ a 7→ 42, which is invalid. To overcome this problem, we allow permissions

to be embedded into heaps so that single-cell heap x 7→ v can be split further. Particularly,

we let x π7→ v denote the fractional maps-to which assigns address x with stored value v and

permission π. One critical requirement is to find a suitable model for π. Boyland [Boy03]

proposed the rational permission model Q = 〈[0, 1],+〉 in which permissions are rationals in

the range [0, 1]. In this model, 0 means empty permission, 1 is the full permission and the

remaining rationals are fractional permissions. Nevertheless, a permission π can be split into

two smaller permissions π1 and π2 using addition, i.e., π = π1 + π2. Then the corresponding

effect over the fractional mapping is the following equivalence:

x
π1+π27−−−−→ v a` x

π17−→ v ∗ x π27−→ v.

∗Here we cheat a little bit as the rule we apply is actually a simple combination of Load and Store rules.

Chapter 2. Preliminaries and notations 41

Let x 7→ v be the syntactic sugar for x 17−→ v. Also, we assume that any cell x π7−→ v for π > 0

is granted the read permission while the write permission is granted to memory cells with

full permission, i.e., x 7→ v. Then the above Hoare triple can be proved using Store, Parallel

and Consequence:

{a 0.57−−→ 42 ∗ x 7→ _}
[x] := [a]

{a 0.57−−→ 42 ∗ x 7→ 42}

Load
{a 0.57−−→ 42 ∗ y 7→ _}

[y] := [a]
{a 0.57−−→ 42 ∗ y 7→ 42}

Load

{a 0.57−−→ 42 ∗ x 7→ _ ∗ a 0.57−−→ 42 ∗ y 7→ _}
[x] := [a] || [y] := [a]

{a 0.57−−→ 42 ∗ x 7→ 42 ∗ a 0.57−−→ 42 ∗ y 7→ 42}

Parallel

{a 7→ 42 ∗ x 7→ _ ∗ y 7→ _}
[x] := [a] || [y] := [a]

{a 7→ 42 ∗ x 7→ 42 ∗ y 7→ 42}

Consequence

To construct the semantics to SL with rational permissions, we need to modify the definition

of heap. In this setting, we use fractional heaps which are a partial mapping from addresses

to pairs of values and permissions:

h : Addr ⇁ Val× Perm.

It is worth noticing that the normal heap is actually a special fractional heap in which all

permissions are full. For simplicity, we omit the break brk from program state κ and thus κ

is now a pair of stack ρ and fractional heap h. Then the semantics of x π7−→ e is defined as

address x with stored value e and permission π:

(ρ, h) |= x
π7−→ e

def= dom(h) = {x} ∧ [|e|]ρ = v ∧ h(x) = (v, π).

The notion of disjoint heaps is relaxed in the sense that their domains can still overlap but

each overlapped address must agree on values and their permissions are joinable. In detail,

two fractional heaps h1 and h2 are disjoint, denoted by h1 ⊥ h2, if for any shared address a

Chapter 2. Preliminaries and notations 42

s.t. h1(a) = (v1, π1) and h2(a) = (v2, π2) then v1 = v2 and π1 + π2 ≤ 1:

h1 ⊥ h2
def= ∀a, v1, v2, π1, π2. a ∈ dom(h1) ∩ dom(h2)→

h1(a) = (v1, π1)→ h2(a) = (v2, π2)→ v1 = v2 ∧ π1 + π2 ≤ 1.

Consequently, the combined heap of h1 and h2, denoted as h1] h2, has domain dom(h) =

dom(h1) ∪ dom(h2) and its permission of each address is the permission sum from h1 and h2

in the respective address:

h1] h2
def=

h1 ⊥ h2,

dom(h) = dom(h1) ∪ dom(h2),

h(a) = h1(a) if a ∈ dom(h1)\dom(h2),

h(a) = h2(a) if a ∈ dom(h2)\dom(h1),

h(a) = (v, π1 + π2) if h1(a) = (v, π1) and h2(a) = (v, π2).

Furthermore, let π1, π2 be permissions such that π1 + π2 ≤ 1 then we can verify that the

permission π1 + π2 can be split via ∗ in the fractional mapping:

(h, ρ) |= x
π1+π27−−−−→ v iff (h, ρ) |= x

π17−→ v ∗ x π27−→ v.

Proof. We only prove the ⇐ direction here as the other direction is similar. By definition of

∗, there exist h1, h2 s.t. h1] h2 = h, (ρ, h1) |= x
π17−→ v and (ρ, h2) |= x

π27−→ v. Each hi is a

single-cell heap of the same address x and stored value v while their permissions are π1 and

π2. As h1] h2 = h, we deduce that h is also a single-cell heap of address x, stored value v

and permission π1 + π2. Thus the result follows.

Although the rational model Q = 〈Q,+〉 is simple and easy to use, it suffers from the

disjointness problem described in Figure 1.1 where the logic fails to distinguish a tree from a

DAG.

There are other flavors of permission besides rationals. Bornat et al. [BCOP05] introduced

Chapter 2. Preliminaries and notations 43

integer counting permissions 〈Z,+, 0〉 to reason about semaphores and combined rationals

and integers into a hybrid permission model. Heule et al. [HLMS11] flexibly allowed

permissions to be either concretely rational or abstractly read-only to lower the nuisance of

detailed accounting. A more general read-only permissions was proposed by Charguéraud

and Pottier [CP17] that transforms a predicate P into read-only mode RO(P) which can

duplicated/merged with the bi-entailment RO(P) a` RO(P) ? RO(P). Their permissions

distribute pleasantly over disjunction and existential quantifier but only work one way

for ?, i.e., RO(H1 ? H2) ` RO(H1) ? RO(H2). Parkinson [Par05] proposed subsets of the

natural numbers for shares 〈P(N),]〉 to fix the disjointness problem. Compared to tree

shares, Parkinson’s model is less practical computationally and does not have an obvious

multiplicative structure.

Verification tools often implement rational permissions because of its simplicity. For example,

VeriFast [JSP10] uses rationals to verify programs with locks and semaphores. It also

allows simple and restrictive forms of scaling permissions which can be applied uniformly

over standard predicates. On the other hand, HIP/SLEEK [LCT15] uses rationals to

model “thread as resource” so that the ownership of a thread and its resources can be

transferred. Chalice [LM09] has rational permissions to verify properties of multi-threaded,

objected-based programs such as data races and dead-locks. Viper [MSS16] has an expressive

intermediate language that supports both rational and abstract permissions. However,

a number of verification tools have chosen tree shares due to their better metatheorical

properties. VST [App11b] is equipped with tree share permissions and an extensive tree

share library. HIP/SLEEK uses tree shares to verify the barrier structure [HG11] although

their permission procedure at that time is highly incomplete. Lastly, tree share permissions

are featured in Heap-Hop [Vil11] to reason over asynchronous communications.

Chapter 3
Reasoning over disjoint fractional permissions

“You cannot ever reach perfection, but

you can believe in an asymptote toward

which you are ceaselessly striving.”

Paul Kalanithi,When Breath Becomes Air.

Resource sharing is a fundamental phenomenon in concurrent programming where several

threads have permissions to access a common resource. As a result, the logic for verification

needs to capture the notion of permission ownership and transferring. One typical practice

is the use of rational numbers in (0, 1] as permissions in which 1 is the full permission and

the rest are fractional permissions. Unfortunately, rational permissions are not a good fit

for separation logic because they remove the essential “disjointness” feature of the logic

itself which was discussed in §1.1. In this chapter, we propose a general logic framework

with predicate multiplication that supports permission reasoning in separation logic while

desirably preserving the disjointness property. We show that our framework is applicable

to sophisticated verification tasks such as doing induction over the finiteness of the heap

within the object logic or carrying out bi-abductive inference. We can also prove precision

of recursive predicates within the object logic. We introduce “scaling separation algebras”

(SSA), a compositional extension of separation algebras, to model our logic, and use them

to construct a concrete model. We discuss several applications of shares to model other

permission types such as token-counting and string-like permissions. Last but not least, the

application of tree shares is demonstrated by the fact they are one of the structures that

satisfy SSA.

44

Chapter 3. Reasoning over disjoint fractional permissions 45

This chapter is organized as follows∗:

1. In §3.1, we introduce our desired scaling rules for predicate multiplication together

with an illustrated example.

2. In §3.2, we explain the bi-abduction inference in the presence of fractional permissions

and predicate multiplication.

3. In §3.3, we display and discuss our core proof system for predicate multiplication

together with concrete examples.

4. In §3.4, we introduce “scaling separation algebras” (SSA), a compositional extension of

separation algebras, to model our logic, and use them to construct a concrete model.

5. In §3.5, we provide justification for our side conditions by showing the consequence of

the disjointness axiom with respect to other axioms in SSA.

6. In §3.6, we discuss the shortcoming of rational permissions and propose applications of

our SSA in modeling other permission types such as token-counting and string-like

permissions.

7. In §3.7, we discuss the tool ShareInfer that employs our proof theories.

8. In §3.8, we mention the related work and draw our conclusion.

3.1 Predicate multiplication

Consider the toy program in Figure 3.1. Starting from the tree rooted at x, the program

itself is dead simple. First (line 3) we check if the x is null, i.e. if we have reached a leaf;

if so, we return. If not, we split into parallel threads (lines 4–6 and 7–9) that do some

processing on the root data in both branches. In the toy example, the processing just prints

out the root data (lines 4 and 7); the print command is unimportant: what is important

that we somehow access some of the data in the tree. After processing the root, both parallel

branches call the processTree function recursively on the left x->l (lines 5 and 8) and right

∗The materials in this chapter are taken from the paper “Logical Reasoning over Disjoint Fractional
Permissions” [LH17], a joint work with my supervisor Aquinas Hobor.

Chapter 3. Reasoning over disjoint fractional permissions 46

1 struct tree {int d; struct tree* l; struct tree* r;};
2 void processTree (struct tree* x) {
3 if (x == 0) { return ; }

4 print(x -> d);
5 processTree (x -> l);
6 processTree (x -> r);

7 print(x -> d);
8 processTree (x -> l);
9 processTree (x -> r);

10 }

Figure 3.1: The processTree function in a C-like language with a parallel operator c1||c2

x->r (lines 6 and 9) branches, respectively. After both parallel processes have terminated,

the function returns (line 10). The initial caller (unshown) may then e.g. deallocate the tree.

The program is simple, so we would like its verification to be equally simple.

Predicate multiplication is the tool that leads to a simple proof. Specifically, we would like

to verify that processTree has the specification:

∀π, x. ({π · tree(x)} processTree(x) {π · tree(x)}).

where the tree predicate is defined as:

tree(x) def= (x = null) ∨ (∃d, l, r. x 7→ (d, l, r) ∗ tree(l) ∗ tree(r)). (3.1)

The formal definition of predicate multiplication π · P is postponed until §3.3.2 as we would

like to maintain a high level of abstraction. Intuitively, one can understand the notion π · P

as “the current heap has a fractional permission π of the predicate P ”. Our precondition and

postcondition both say that x is a pointer to a heap-represented π-owned tree. Critically, we

want to ensure that our π-share at the end of the program is equal to the π-share at the

beginning. This way if our initial caller had full ownership (denoted by F) before calling

processTree, he will have full ownership afterwards (allowing him to e.g. deallocate the

tree).

The intuition behind the proof can be explained informally as follow. First in line 3, we

check if x is null; if so we are in the base case of the tree definition and can simply return.

Chapter 3. Reasoning over disjoint fractional permissions 47

If not we can eliminate the left disjunct and can proceed to split the ∗-separated bits into

disjoint subtrees l and r, and then dividing the ownership of those bits into two “halves”.

Let L be any share other than E (empty permission) or F (full permission) and let R def= L

be its compliment; intuitively L is the “left half” and R is the “right half”. When we start

start the parallel computation on lines 4 and 7 we want to pass the left branch of the

multiplication computation the L ⊗ π-share of the spatial resources, and the right branch of

the multiplication computation the R⊗ π. In both branches we then need to show that we

can read from the data cell, which in the simple policy we use for this thesis boils down to

making sure that the product of two non-E shares cannot be E . This is a basic property for

reasonable share models with multiplication. In the remainder of the parallel code (lines 5–6

and 8–9) we need to make recursive calls, which is done by simply instantiating π with L⊗π

and R⊗ π in the recursive specification (as well as l and r for x). The later half proof after

the parallel call is pleasantly symmetric to the first half in which we fold back the original

tree predicate by merging the two halves L ⊗ π and R⊗ π back into π. Consequently, we

arrive at the postcondition π · tree(x), which is identical to the precondition.

3.1.1 Proof rules for predicate multiplication

In Figure 3.3 we put the formal verification for processTree, which follows the informal

argument very closely. However, before we go through it, let us consider the reason for this

alignment: because the key rules for reasoning about predicate multiplication are bidirectional.

These rules are given in Figure 3.2. The non-spatial rules are all straightforward and follow

the basic pattern that predicate multiplication both pushes into and pulls out of the

operators of our logic without meaningful side conditions∗. The DotPure rule means that

predicate multiplication ignores pure facts, too. Complicating the picture slightly, predicate

multiplication pushes into implication ⇒ but does not pull out of it. Combining DotImpl

with DotPure we get a one-way rule for negation: π · (¬P) ` ¬π·. We will explain why we

cannot get both directions in §3.3.2 and §3.5.

∗As a minor side condition we require that the universe of quantification be nonempty in the DotUniv
rule.

Chapter 3. Reasoning over disjoint fractional permissions 48

P ` Q
π · P ` π ·Q DotPos

π · 〈P 〉 a` 〈P 〉 DotPure
π · (P ⇒ Q) ` (π · P)⇒ (π ·Q) DotImpl

π · (P ∧Q) a` (π · P) ∧ (π ·Q)
Dot

Conj π · (P ∨Q) a` (π · P) ∨ (π ·Q)
Dot

Disj π · (¬P) ` ¬π · P
Dot

Neg

τ 6= ∅
π ·
(
∀x : τ. P (x)

)
a` ∀x : τ. π · P (x)

DotUniv
π ·
(
∃x : τ. P (x)

)
a` ∃x : τ. π · P (x)

DotExis

F · P a` P
Dot

Full
π1 · (π2 · P) a` (π1 ⊗ π2) · P

Dot

Dot
π · x 7→ y a` x π7→ y

Dot

MapsTo

precise(P)
(π1 ⊕ π2) · P a` (π1 · P) ∗ (π2 · P) DotPlus

P ` uniform(π′) Q ` uniform(π′)
π · (P ∗Q) a` (π · P) ∗ (π ·Q) DotStar

Figure 3.2: Distributivity of the scaling operator over pure and spatial connectives

Most of the spatial rules are also simple in which 〈P 〉 def= |P | ∧ emp. Accordingly, since

〈>〉 a` emp, DotPure yields π · emp a` emp. The DotFull rule says that F is the scalar

identity on predicates, just as it is the multiplicative identity on the share model itself.

The DotDot rule allows us to “collapse” repeated predicate multiplication using share

multiplication; we will shortly see how we use it to verify the recursive calls to processTree

in lines 5–6 and 8–9. Similarly, the DotMapsTo rule shows how predicate multiplication

combines with basic maps-to by multiplying the associated shares together. All three rules

are bidirectional and require no side conditions. We also want to mention that these rules

are proved correct with respect to the assumed model in Coq [Dev].

While the last two rules are both bidirectional, they both have side conditions. The DotPlus

rule shows how predicate multiplication distributes over ⊕. The ` direction does not require

a side condition, but the a direction we require that P be precise in the usual separation

logic sense. Informally, precision is some kind of uniqueness condition that helps pinpoint

the exact shape of the given predicate. One common place where a predicate is not precise

is due to disjunction, e.g., x 7→ 1 ∨ y 7→ 2. Precision will be discussed in §3.3.3; for now a

Chapter 3. Reasoning over disjoint fractional permissions 49

1 void processTree (struct tree* x) { // { π · tree(x) }

2 //
{
π ·
(〈

x = null
〉
∨
(
∃d, l, r. x 7→ (d, l, r) ∗ tree(l) ∗ tree(r)

))}
3 //

{〈
x = null

〉
∨
(
∃d, l, r. x π7→ (d, l, r) ∗

(
π · tree(l)

)
∗
(
π · tree(r)

))}
4 if (x == null) {
5 // {〈x = null〉}
6 // { π · tree(x) }
7 return ; }

8 //
{

x π7→ (d, l, r) ∗
(
π · tree(l)

)
∗
(
π · tree(r)

)}
9 //

{
F ·
(

x π7→ (d, l, r) ∗
(
π · tree(l)

)
∗
(
π · tree(r)

))}
10 //

{
(L ⊕R) ·

(
x π7→ (d, l, r) ∗

(
π · tree(l)

)
∗
(
π · tree(r)

))}
11 //

(
L ·
(

x π7→ (d, l, r) ∗
(
π · tree(l)

)
∗
(
π · tree(r)

)))
∗(

R·
(

x π7→ (d, l, r) ∗
(
π · tree(l)

)
∗
(
π · tree(r)

)))

12 //
{
L ·
(

x π7→ (d, l, r) ∗
(
π · tree(l)

)
∗
(
π · tree(r)

))}
13 //

{
L · x π7→ (d, l, r) ∗ L · π · tree(l) ∗ L · π · tree(r)

}
14 //

{
x L⊗π7−→ (d, l, r) ∗

(
(L ⊗ π) · tree(l)

)
∗
(
(L ⊗ π) · tree(r)

)}
15 print(x -> d);
16 processTree (x -> l); processTree(x -> r);

17 //
{

x L⊗π7−→ (d, l, r) ∗
(
(L ⊗ π) · tree(l)

)
∗
(
(L ⊗ π) · tree(r)

)}
18 //

{
L · π · x 7→ (d, l, r) ∗ L · π · tree(l) ∗ L · π · tree(r)

}
19 //

{
L · π ·

(
x 7→ (d, l, r) ∗ tree(l) ∗ tree(r)

)}

. . .

20 //

(
L ·π ·

(
x 7→ (d, l, r) ∗ tree(l) ∗ tree(r)

))
∗(

R·π ·
(
x 7→ (d, l, r) ∗ tree(l) ∗ tree(r)

))

21 //
{

(L ⊕R) · π ·
(
x 7→ (d, l, r) ∗ tree(l) ∗ tree(r)

))}
22 } // { π · tree(x) }

Figure 3.3: Reasoning with the scaling operator π · P .

simple counterexample shows why it is necessary:

L · (x 7→ a ∨ (x+ 1) 7→ b) ∗ R · (x 7→ a ∨ (x+ 1) 7→ b) 6` F · (x 7→ a ∨ (x+ 1) 7→ b).

The premise is also consistent with x
L7→ a ∗ (x + 1) R7→ b, which is inconsistent with the

conclusion.

The DotStar rule shows how predicate multiplication distributes into and out of the

separating conjunction ∗. It is also bidirectional, but again requires a side condition of

Chapter 3. Reasoning over disjoint fractional permissions 50

uniformity. Informally, P ` uniform(π) asserts that any heap satisfies P has the permission

π uniformly at each of its defined addresses. Interestingly, this condition is trivial in

the standard SL without fractional permissions because any predicate is automatically

full-uniform. In §3.5 we explain why we cannot admit this rule without a side condition.

In the meantime, let us argue that most predicates used in practice in separation logic

are uniform. First, every SL predicate defined in non-fractional settings, such as tree(x),

is F-uniform. Second, P is a π-uniform predicate if and only if π′ · P is (π′ ⊗ π)-uniform.

Third, the ∗-conjunction of two π-uniform predicates is also π-uniform. Since a significant

motivation for predicate multiplication is to allow standard SL predicates to be used in

fractional settings, these already cover many common cases in practice. It is useful to

consider examples of non-uniform predicates for contrast. Here are three (where we have

removed the base case to cut down on clutter):

slist(x) a` ∃d, n.
(
(〈d = 17〉 ∗ x L7→ (d, n)) ∨ (〈d 6= 17〉 ∗ x R7→ (d, n))

)
∗ slist(n).

dlist(x) a` ∃d, n. x 7→ d, n ∗ L · dlist(n).

dtree(x) a` ∃d, l, r. x 7→ d, l, r ∗ L · dtree(l) ∗ R · dtree(r).

The slist(x) predicate owns different amounts of permissions at different memory cells

depending on the value of those cells. The dlist(x) predicate owns decreasing amounts of the

list, e.g. the first cell is owned more than the second, which is owned more than the third.

The dtree(x) predicate is even stranger, owning different amounts of different branches of

the tree, essentially depending on the path to the root. None of these predicates mix well

with DotStar, but perhaps they are not useful to verify many programs in practice, either.

In §3.3.2 and §3.3.3 we will discuss how to prove predicates are precise and uniform. In

§3.3.5 will demonstrate our techniques to do so by applying them to two examples.

Chapter 3. Reasoning over disjoint fractional permissions 51

3.1.2 Verification of processTree using predicate multiplication

We will explain in detail how the proof of processTree (Fig. 3.3) is carried out using scaling

rules (Fig. 3.2). In line 2, we unfold the definition of predicate tree(x) which consists of one

base case and one inductive case. We reach line 3 by pushing π inward using various rules

DotPure, DotDisj, DotExis, DotMapsto and DotStar. To use DotStar we must

prove that tree(x) is F -uniform, which we show how to do in §3.3.5. Typically we prove this

lemma once and use it many times.

The base base x = null is handled in lines 5-6 by applying rule DotPure, i.e., 〈x = null〉 `

π · 〈x = null〉 and then DotPos, π · 〈x = null〉 ` π · tree(x). For the inductive case, we first

apply DotFull in line 9 and then replace F with L ⊕R (recall that R is L’s compliment).

On line 11 we use DotPlus to translate the split on shares with ⊕ into a split on heaps

with ∗.

We show only one parallel process; the other is a mirror image. Line 12 gives the precondition

from the Parallel rule, and then in lines 13 and 14 we continue to “push in” the predicate

multiplication. To verify the code in lines 15–16 just requires Frame. Notice that we need

the DotDot rule to “collapse” the two uses of predicate multiplication into one so that we

can apply the recursive specification (with the new π′ in the recursive precondition equal to

L ⊗ π).

Having taken the predicate completely apart, it is now necessary to put Humpty Dumpty

back together again. Here is why it is vital that all of our proof rules are bidirectional,

without which we would not be able to reach the final postcondition π · tree(x). The final

wrinkle is that for line 21 we must prove the precision of the tree(x) predicate. We show

how to do so (on a slightly simpler example) in §3.3.5, but typically in a verification this is

proved once per predicate as a lemma.

Chapter 3. Reasoning over disjoint fractional permissions 52

3.2 Bi-abduction inference

In this section, we will tackle the bi-abduction problem in the context of fractional permissions.

Simply put, the task of bi-abduction is to fulfill missing information in an incomplete SL

entailment. To be precise, given partial entailment A ∗ [??] ` B ∗ [??], we would like to

identify the two different missing pieces [??] in the antecedent and consequent to complete

the entailment. The first piece is called the anti-frame while the second is called the frame.

This problem is motivated by the scalability problem of verification tools when dealing with

sizable programs [GVA07, YLB+08]. In particular, bi-abductive inference can be paired up

with the Frame rule [IO01] to produce a smooth compositional reasoning framework:

{A1}c1{A2}
{A1 ∗ F1}c1{A2 ∗ F1}

Frame

{B1}c2{B2}
{B1 ∗ F2}c1{B2 ∗ F2}

Frame
A2 ∗ [F1] ` B1 ∗ [F2] BiAb

{A2 ∗ F1}c2{B2 ∗ F2}
Con

{A1 ∗ F1}c1; c2{B2 ∗ F2}
Composition

In short, the antecedent and consequent of c1; c2 are derived from the ones in c1 and

c2 with the aid of bi-abduction and frame rule. Consequently, this approach promises a

scalable verification framework and thus bi-abduction received considerable research attention

recently [CDOY09, BGK17, CDV09, LGQC14]. A general procedure to solve this problem

consists of two subroutines: the abduction and frame inference to induce the anti-frame and

frame respectively. Thus our task is to explain the necessary steps to generalize the two

subroutines to handle fractional entailments.

3.2.1 Fractional residue computation

Consider the fractional point-to bi-abduction problem with rational permissions:

a
π17−→ b ∗ [??] ` a π27−→ b ∗ [??].

There are three cases to consider, i.e., π1 = π2, π1 < π2 or π1 > π2. In the first case, both

the (minimal) anti-frame Fa and frame Ff are emp; for the second case we have Fa = emp,

Chapter 3. Reasoning over disjoint fractional permissions 53

Ff = a
π2−π17−−−−→ b and the last case gives us Fa = a

π1−π27−−−−→ b, Ff = emp. Here we compute the

residue permission using rational subtraction, which is essentially the inverse of addition.

In general, we can attempt to define subtraction 	 from a fractional model 〈U ,⊕〉 as

a	 b = c
def= b⊕ c = a. However, this definition is too coarse as we require subtraction to be

a total function so that the residue is always computable. To overcome this problem, we

relax the requirements for 	, asking only that it satisfies the following two properties:

C1 : a⊕ (b	 a) = b⊕ (a	 b) C2 : a� b⊕ c⇒ a	 b� c.

where a� b
def= ∃c. a⊕ c = b. The condition C1 provides a convenient way to compute the

fractional residue in both the frame and anti-frame while C2 asserts that a	b is efficiently the

minimal element that when joined with b becomes greater than a. For example, subtraction

in rational permissions can be defined as:

a	 b def= if a ≥ b then a− b else 0.

Using subtraction, the fractional residue can be derived in a unique and pleasant way:

a
π17−→ b ∗ a π2	π17−−−−→ b ` a π27−→ b ∗ a π1	π27−−−−→ b

Msub

Generally, if P is precise then we can use the following rule to compute the residue of P :

precise(P)
π1 · P ∗ (π2 	 π1) · P ` π2 · P ∗ (π1 	 π2) · P Psub

Furthermore, we can show that the above solution is minimal with respect to �, i.e.:

π1 ⊕ a = π2 ⊕ b⇒ π2 	 π1 � a ∧ π1 	 π2 � b.

Proof. From π1⊕ a = π2⊕ b, we have π1 � π2⊕ b. Thus by C2, we arrive π1	 π2 � b. The

other inequality is similar.

Chapter 3. Reasoning over disjoint fractional permissions 54

3.2.2 Extension of predicate axioms

Programs commonly contain recursive structures such as list, tree as these structures allows

efficient mechanisms to store and retrieve data. Correspondingly, the assertion language is

enriched with inductive predicates to reason about recursive structures. In general, the infer-

ence problem over recursive structures is hard, e.g. the first-order theory of Peano arithmetic

〈0, S,+,×〉 is undecidable [Chu36]. As a result, verification tools [CDD+15, LGQC14] often

contain a list of predicate axioms/facts and use them to derive entailments of the related

predicates. These axioms are represented as entailment A ` B and are classified into folding

and unfolding rules. As their names suggest, folding rules are predicate constructors whereas

unfolding rules help unroll a predicate into smaller components. Basically, one can derive

useful lemmas from the definition of inductive predicates e.g. [Bro07b]. For example, some

axioms for the tree predicate (Eqn. 3.1) are:

F1 : x = 0 ∧ emp ` tree(x) F2 : x 7→ (v, x1, x2) ∗ tree(x1) ∗ tree(x2) ` tree(x).

U : tree(x) ∧ x 6= 0 ` ∃v, x1, x2. x 7→ (v, x1, x2) ∗ tree(x1) ∗ tree(x2).

We show how to transform these axioms into fractional forms. The key ingredient is the

DotPos rule from Fig, 3.2 that extracts a fractional portion of entailment, i.e., (P ` Q)⇒

(π · P ` π ·Q). Using other scaling rules, we can transform the rule U above into the general

fractional form U ′:

U : tree(x) ∧ x 6= 0 ` ∃v, x1, x2. x 7→ (v, x1, x2) ∗ tree(x1) ∗ tree(x2)
π · (tree(x) ∧ x 6= 0) ` π · (∃v, x1, x2. x 7→ (v, x1, x2) ∗ tree(x1) ∗ tree(x2)) DotPos

U ′ : π · tree(x) ∧ x 6= 0 ` ∃v, x1, x2. x
π7−→ (v, x1, x2) ∗ π · tree(x1) ∗ π · tree(x2)

Scaling rules

The fractional forms for the two folding rules F1 and F2 can be derived in a similar fashion:

F ′1 : x = 0∧ emp ` π · tree(x) F ′2 : x π7−→ (v, x1, x2)∗π · tree(x1)∗π · tree(x2) ` π · tree(x).

As our scaling rules are all bi-directional, they can be applied both in the antecedent and

consequent to produce a smooth transformation to fractional axioms. Also, recall that our

Chapter 3. Reasoning over disjoint fractional permissions 55

DotStar rule π · (P ∗ Q) a` π · P ∗ π · Q has a side condition that both P and Q are

π′-uniform. Happily, this condition is trivial in the transformation as standard predicates

(i.e. those without permissions) are automatically F-uniform. Alternatively, the precision

and uniformity properties can be transfered to fractional predicates by the following rules:

precise(π · P)⇔ precise(P) P ` uniform(π)⇔ π′ · P ` uniform(π′ ⊗ π).

For example, tree(x) is precise and full-uniform. Thus π · tree(x) is also precise and π-uniform.

3.2.3 Abductive inference

Given predicates A and B, we find the anti-frame Fa that satisfies the entailment:

A ∗ Fa ` B.

In addition, we want the predicate A ∗ Fa to be satisfiable and Fa to be reasonably minimal

(measured by the size of heap satisfies it). Between the two subroutines in bi-abduction, the

abduction problem is technically more challenging as tools need to generate hypotheses to

fill in the anti-frame. With inductive definitions, the hypothesis space is infinitely large and

thus it is impractical, if not impossible, to develop a complete anti-frame solver. Calcagno

et al. [CDOY09] tackled this problem by presenting a general framework for anti-frame

inference which contains rules of the form:

∆′ ∗ [M ′] B H ′ Cond
∆ ∗ [M] B H

in which Cond is the side condition together with consequents (H,H ′), heap formulas (∆,∆′)

and anti-frames (M,M ′). During the abductive inference, the tool starts with some base

axiom and gradually applies proof rules to propagate the anti-frame. Simultaneously, it also

ensures the current constructed antecedent ∆ and consequent H are comparable with the

original ones while ∆ does not contradict with the anti-frame. On the other hand, these

abduction rules are directly constructed from predicate axioms. As we previously discussed

Chapter 3. Reasoning over disjoint fractional permissions 56

x
π17−→ (v, a, x2) ∗ π2 · tree(x1) ∗ (x2 = 0 ∧ emp) ∗ [??] ` π3 · tree(x)

(x2 = 0 ∧ emp) ∗ [emp] B emp Base

(x2 = 0 ∧ emp) ∗ [emp] B π3 · tree(x2) F1
′

π2 · tree(x1) ∗ (x2 = 0 ∧ emp) ∗ [(π3 	 π2) · tree(x1)] B π3 · tree(x1) ∗ π3 · tree(x2) Psub

x
π17−→ (v, a, x2) ∗ π2 · tree(x1) ∗ (x2 = 0 ∧ emp) ∗ [(π3 	 π2) · tree(x1) ∗ x π3	π17−−−−→ (v, a, x2)] B

x
π37−→ (v, a, x2) ∗ π3 · tree(x1) ∗ π3 · tree(x2)

Msub

x
π17−→ (v, a, x2) ∗ π2 · tree(x1) ∗ (x2 = 0 ∧ emp)

∗ [a = x1 ∧ (π3 	 π2) · tree(x1) ∗ x π3	π17−−−−→ (v, a, x2)] B π3 · tree(x)

match
+F′2

Figure 3.4: Abductive inference

emp B emp ∗ [emp] Base

x
π1⊕(π3	π1)7−−−−−−−−→ (v, x1, x2) B x π37−→ (v, x1, x2) ∗ [x (π1	π3)7−−−−−→ (v, x1, x2)]

Msub

x
π1⊕(π3	π1)7−−−−−−−−→ (v, x1, x2) ∗ (π2 ⊕ (π3 	 π2)) · tree(x1) B

x
π37−→ (v, x1, x2) ∗ π3 · tree(x1) ∗ [x (π1	π3)7−−−−−→ (v, x1, x2) ∗ (π2 	 π3) · tree(x1)]

Psub

x
π1⊕(π3	π1)7−−−−−−−−→ (v, x1, x2) ∗ (π2 ⊕ (π3 	 π2)) · tree(x1) ∗ (x2 = 0 ∧ emp) B

x
π37−→ (v, x1, x2) ∗ π3 · tree(x1) ∗ π3 · tree(x2) ∗ [x (π1	π3)7−−−−−→ (v, x1, x2) ∗ (π2 	 π3) · tree(x1)]

F′1

Figure 3.5: Frame inference

the transformation of predicate axioms into their fractional versions, the abduction problem

for fractional heaps is inherently straightforward. For demonstration, consider the abduction

together with its inference given in Figure 3.4. Here we explain the steps to construct the

anti-frame a = x1 ∧ (π3 	 π2) · tree(x1) ∗ x π3	π17−−−−→ (v, a, x2). First, we start with the base

axiom that asserts the empty heap on both sides and let x2 = 0. Next, we apply the folding

rule F1
′ to infer π3 · tree(x2) on the right hand side. For the subsequent two steps, we

invoke two rules Psub and Msub to compute the fractional residues inside the anti-frame

when filling the antecedent and consequent. As the frame will be constructed in the next

subroutine, all the current fractional residues in the consequent are dropped off. Finally, we

unify the variable a with x1 and apply the folding rule F2
′ to complete the consequent.

Chapter 3. Reasoning over disjoint fractional permissions 57

3.2.4 Frame inference

The task of frame inference is to compute the residue in the consequent. In particular, given

the entailment A ` B, we would like to find the residue frame Ff such that:

A a` B ∗ Ff .

This task is more pleasant than abduction because the frame Ff can be sufficiently deduced

from A. As the frame Ff vitally prevents resource loss, verification tools [CDNQ12, DPJ08,

BCO06] essentially have different techniques for their own frame inference mechanism. In

principle, tools progressively try to match resources from consequent B with the ones in the

antecedent A. Once B is completely matched, the remaining proportion in A is returned

as the residue frame. Similar to abduction, a set of predicate axioms/facts is used to deal

with predicate inference. Smoothly, such tools can upgrade to fractional reasoning by simply

replacing the axiom set with the its fractional version and using two subtraction rules Msub

and Psub to induce the fractional residue frame. For instance, we will show how to compute

the frame from the previous abduction example (see Figure 3.5 for more details):

x
π17−→ (v, a, x2) ∗ π2 · tree(x1) ∗ (x2 = 0 ∧ emp) ∗

(
a = x1 ∧ (π3 	 π2) · tree(x1)

∗ x π3	π17−−−−→ (v, a, x2)
)
B π3 · tree(x) ∗ [??].

First, we simplify the antecedent by grouping same-address permissions and substituting

a = x1:

x
π1⊕(π3	π1)7−−−−−−−−→ (v, x1, x2) ∗ (π2 ⊕ (π3 	 π2)) · tree(x1) ∗ (x2 = 0 ∧ emp) B π3 · tree(x) ∗ [??].

Also, we apply the unfolding rule U′ on the consequent to expose the matching pattern:

x
π1⊕(π3	π1)7−−−−−−−−→ (v, x1, x2) ∗ (π2 ⊕ (π3 	 π2)) · tree(x1) ∗ (x2 = 0 ∧ emp) B

x
π37−→ (v, x1, x2) ∗ π3 · tree(x1) ∗ π3 · tree(x2) ∗ [??].

Chapter 3. Reasoning over disjoint fractional permissions 58

After the pre-processing, we start the frame inference by repeatedly matching consequent

with antecedent; the left-over resources are accumulated inside the frame [??]; see Figure 3.5.

Hence, the residue frame from is computed as x (π1	π3)7−−−−−→ (v, x1, x2) ∗ (π2 	 π3) · tree(x1).

Similar to abduction, we initiate with a base axiom that asserts both hand sides are emp.

We then start the matching between two sides while using two rules Msub and Psub to

compute the residues in the frame. In the last step, we apply folding rule F1
′ to match

π3 · tree(x2) with x2 = 0 ∧ emp.

3.3 A proof theory for fractional permissions

In this section we examine predicate multiplication, and fractional separation logic more

generally, from a proof theory perspective. In §3.4 we will develop a model (in the metalogic)

to show that our logic is sound, but for now we do not assume a concrete model for our

object logic. That is, in §3.3 all of our proofs are carried out in the object logic using various

inference rules such as:

P ` P `Refl
P ` Q P ` R
P ` Q ∧R ∧Right

P ` Q−∗R
P ∗Q ` R ∗−∗Adj

∀x.
(
P (x) ` Q

)
∃x.P (x) ` Q ∃Left

Our goal in §3.3 is thus to discuss the proof rules we provide and demonstrate their usefulness.

Some of the theorems have somewhat delicate proofs, so all of them have been verified

in Coq. Instead of showing complete proofs we will simply give sketches showing the key

intermediate points.

First we will give the ingredients of our base logic in §3.3.1, including a brief review of modal

logic. Then we will discuss our new proof rules for predicate multiplication and fractional

maps-tos (§3.3.2), precision (§3.3.3), and induction over fractional heaps (§3.3.4). The new

rules are contained in a series of figures on page 62. We conclude (§3.3.5) with two examples

that show that our proof theory is strong enough to prove real properties: that tree(x) is

F-uniform and that list(x) is precise.

Chapter 3. Reasoning over disjoint fractional permissions 59

3.3.1 Base logic

Our logic starts with the following base operators as follows:

P
def= |P |

∣∣ P∧Q ∣∣ P∨Q ∣∣ P ⇒ Q
∣∣ emp

∣∣ ∗ ∣∣ −∗ ∣∣ ∀x.P (x)
∣∣ ∃x.P (x)

∣∣ µX.P. (3.2)
The intended meaning of most of these operators is entirely standard: conjunction ∧,

disjunction ∨, implication ⇒, separating identity emp, separating conjunction ∗, separating

implication −∗, universal ∀ and existential ∃ quantification. We allow covariant equirecursive

predicates µ via the standard Knaster-Tarski fixpoint µ [Tar55], which allows us to build

recursive definitions such as tree(x) as in equation (3.1) or the somewhat simpler list(x)

predicate defined as

list(x) a` 〈x = null〉 ∨ ∃d, n. x 7→ (d, n) ∗ list(n). (3.3)

We can also inject any “pure” fact P in the metalogic into the object logic with |P |, and

thus define > def= |>| and ⊥ def= |⊥|. Note that |P | does not restrict the separated resources,

e.g. |P | a` |P | ∧>. Our main use of the metalogic in §3.3 is to conveniently manage routine

proof details such as substitution of equalities, variable management, and ⊥ elimination.

At the cost of some additional hassle in the mechanized proofs we could add these kinds

of routine features to the object logic if we wished to to avoid the metalogic entirely. We

use the same symbols for operators at both the meta and object level. Our convention is

that when we wish to use a meta-level symbol we will use parentheses to make sure it is out

of scope from all ` symbols; for example, in the ∃Left rule above, the ∀ above the line is

a meta-level symbol whereas the ∃ below the line is an object-level symbol. The standard

proof rules for the base symbols shown in equation (3.2) is given in Figure 3.6.

As we will see in §3.3.2, predicate multiplication has a strong connection with modal logic.

We also use modal logic in §3.3.4 to structure induction over the finiteness of the heap within

the object logic. Accordingly, we add the symbol families �RP and ♦RP to our logic, where

R is an index into a family of modal operators. That is, we have a multimodal logic. In the

Kripke model we show in §3.3.2, R will be a relation between worlds, and as usual �R will be

Chapter 3. Reasoning over disjoint fractional permissions 60

P ` P `Refl
P ` Q P ` R
P ` Q ∧R ∧Right P ` R

P ∧Q ` R ∧Left1
Q ` R

P ∧Q ` R ∧Left2

P ` Q Q ` R
P ` R `Trans

P ` R Q ` R
P ∨Q ` R ∨Left

P ` Q
P ` Q ∨R ∨Right1 P ` R

P ` Q ∨R ∨Right2

P ` R Q ` S
P ∗Q ` R ∗ S `∗

P ` Q⇒ R

P ∧Q ` R ∧⇒Adj > ` P ∨ ¬P LEM
P ⇒ (> ` Q)
|P | ` Q

Pure

Left

Q

P ` |Q|
Pure

Right

P ∗emp a` P
∗emp

P ` Q−∗R
P ∗Q ` R ∗−∗Adj

P ∗Q a` Q∗P ∗Comm
P ∗(Q∗R) a` (P ∗Q)∗R ∗Assoc

P (c) ` Q
∀x.P (x) ` Q ∀Left

∀x.
(
P ` Q(x)

)
P ` ∀x.Q(x) ∀Right

∀x.
(
P (x) ` Q

)
∃x.P (x) ` Q ∃Left

P ` Q(c)
P ` ∃x.Q(x) ∃Right

∀P,Q, x.
(
P (x) ` Q(x)

)
⇒
(
F (P)(x) ` F (Q)(x)

)
∀x.
(
(µF)(x) a` F (µF)(x)

) µFoldUnfold
∀x.
(
P (x) a` F (P)(x)

)
∀x.
(
(µF)(x) ` Px

) µLeastFixpoint

Figure 3.6: Proof theory for separation logic with covariant recursion

> ` P
> ` �RP

N
�R(P ⇒ Q) ` (�RP)⇒ (�RQ) K

∀x. �RP (x) ` �R
(
∀x.P (x)

) BF
♦RP a` ¬�R¬P

♦�

Figure 3.7: Standard axioms for modal logic

a necessary/univeral modality whereas its dual ♦R will be a possibility/existential modality.

Our proof theory for modal logic is divided into two parts. The general part consists of four

rules in Fig. 3.7. These axioms are standard (including their names such as K). We assume

a classical setting with axiom ♦�. In addition, various modal operators R satisfy additional

rules such as the following:

�RP ` P
T

�RP ` �R�RP
4

�R�RP ` �RP
C4

�RP ` ♦RP
D

♦RP ` �RP
CD

�RP ` P
> ` P W

By the correspondence theory for modal logic, given a Kripke model for the logic, these

axioms hold if and only if R is reflexive (T), transitive (4), dense (C4), total (D), functional

(CD), and/or finitely chained (W). No single modal logic R satisfies all of the above axioms

Chapter 3. Reasoning over disjoint fractional permissions 61

(e.g., D and W lead to a contradiction). Once one proves that a model satisfies characteristic

modal axioms many lemmas follow “for free.” For example, any CD modal logic satisfies

♦R(P ∧Q) a` (♦RP) ∧ (♦RQ). As we are about to see, this is exactly the DotConj rule

from Figure 3.2.

3.3.2 Proof theory for π · P and x
p7−→ y

Predicate multiplication. In §3.1 we presented the “user view” of predicate multipli-

cation in Figure 3.2. That is, we presented the rules that someone who wants to verify

programs may find convenient. As we explained, a key selling point for such users is that

essentially all of the rules are bidirectional. Counting each direction of the various rules

separately, there are 23 such rules. For reasons of modularity it is convenient to consider

DotMapsTo separately, leaving 21 rules. By finding a connection to modal logic, we can

prove these 21 rules from the core set of 10 rules given in Figure 3.8 (again counting each

direction as a separate goal). When we provide an abstract model in §3.4 for our logic,

needing to prove a smaller rule set will simplify our task. Better still, the connection will

give us insight into why certain properties are true—and why others are not.

To see why there is a modal connection, we will preview the underlying semantic model

before putting it back on the shelf until §3.4.3. Recall that the informal meaning of π · P is

that we have a π-fraction of predicate P . The formal semantics of this notion relies on a

little trick:

h |= π · P def= ∃h′. mul(π, h′) = π ∧ h′ |= P. (3.4)

A heap h contains a π-fraction of P if there exists a bigger heap h′ that satisfies P , and

when you “multiply” that bigger heap h′ by the scalar π you get to the smaller heap h. By

“mul” we mean the scalar multiplication of a heap by a share—intuitively, for each memory

location x, multiplying π with the share πx associated with x to reach π ⊗ πx. We will

discuss mul further in §3.4.3.

Recall that the standard Kripke model for �R is w |= �R
def= ∀w′.wRw′ ⇒ w′ |= Q and for

♦R is w |= ♦R
def= ∃w′.wRw′ ∧ w′ |= Q. Accordingly, predicate multiplication is exactly the

Chapter 3. Reasoning over disjoint fractional permissions 62

π · P ` π � P CD F � P ` P T
π � (π′ � P) a` (π ⊗ π′)� P

MSeq

π · (|P | ∧ emp) a` |P | ∧ emp DotPure (π1 ⊕ π2) · P ` (π1 · P) ∗ (π2 · P)
Dot

Plus1

P ` uniform(π′) Q ` uniform(π′)
π · (P ∗Q) a` (π · P) ∗ (π ·Q) DotStar

precise(P)
(π1 · P) ∗ (π2 · P) ` (π1 ⊕ π2) · P

Dot

Plus2

Figure 3.8: Core proof theory for predicate multiplication

emp ` uniform(π)
uniform/emp

uniform(π) ∗ uniform(π) a` uniform(π) uniform∗

P ` uniform(π)
π′ · P ` uniform(π′ ⊗ π) uniformDot

precise(P)
precise(π · P)

Dot

Precise

Figure 3.9: Uniformity and precision for predicate multiplication

π · x 7→y a` x π7→y

Dot

MapsTo x
π7→y ` uniform(π)

7→

uniform (x π7→y1∗>)∧(x π′7→y2∗>) ` |y1 =y2|

7→

inversion

precise(x π7→ y)
7→

precise x
π7→ y ` ¬emp

7→

emp x
π7→ y ` |x 6= null|

7→

null

Figure 3.10: Proof theory for fractional maps-to

> ` precisely(P)
precise(P)

precisely

Precise

G ` precisely(P) G ` precisely(Q)
G ` precisely(P ∗Q)

precisely∗

G ` precisely(P)
G ` precisely(P ∧Q)

precisely∧
∃x.
(
G ` precisely

(
P (x)

))
G ` precisely

(
∀x.P (x)

) precisely∀

G ` precisely(P)

G ` precisely(Q)

G ∧ (P ∗ >) ∧ (Q ∗ >) ` ⊥
G ` precisely(P ∨Q)

precisely∨

∀x.
(
G ` precisely

(
P (x)

))
∀x, y.

(
G ∧

(
P (x) ∗ >

)
∧
(
P (y) ∗ >

)
` |x = y|

)
G ` precisely

(
∃x.P (x)

) precisely∃

precisely(P)`
(
(P ∗Q)∧(P ∗R)

)
⇒
(
P ∗(Q∧R)

) precisely

Left

∀Q,R.
(
G`

(
(P ∗Q)∧(P ∗R)

)
⇒
(
P ∗(Q∧R)

))
G`precisely(P)

precisely

Right

Figure 3.11: Proof theory for precision

}P ` P T
}P ` }} P 4

BπP ` BπBπ P
4
BπP ` P
> ` P W

BπP a`Bπ}P
Bπ}

BπP a` }BπP
}Bπ

(P ∗Q) ∧}R ` (P ∧}R) ∗ (Q ∧}R)
}∗

P ` U(π) ∧ ¬emp
(P ∗Q) ∧BπR ` (P ∧BπR) ∗ (Q ∧R)

Bπ∗

Figure 3.12: Proof theory for substructural induction

Chapter 3. Reasoning over disjoint fractional permissions 63

modal ♦ using the relation “factor-π” Fπ, which is defined as hFπh′
def= mul(π, h′) = h. That

is, π · P def= ♦FπP . It is convenient to state some of the core predicate multiplication rules

using its modal dual, written π�P and defined as �FπP . Just as with any modal �/♦ pair,

� and · satisfy N, K, BF, and ♦�.

We call the Fπ relation “factor-π” since given an “input” h, the relation is defined with an

output h′ when h can have π “factored out of it” to reach h′. To make an analogy, the

natural 15 is in the “factor-3” relation with 5. This analogy provides good intuition because

the relation Fπ is functional (wFπw′ ⇒ wFπw
′′ ⇒ w′ = w′′) but not total (given an arbitrary

π, not every w has a Fπ-successor w′, just as 15 does not have a successor in N for the

“factor-7” relation). In other words, � satisfies axiom CD but not axiom D. We will discuss

axiom D further shortly. Once we prove axiom CD on the underlying semantic model, we

then get 11 of the rules for predicate multiplication for free: DotPos, DotDisj, DotConj,

DotImpl, DotNeg, DotUniv, and DotExis. Consequently, instead of considering the

proof rules in Fig. 3.2, we now can focus our attention to the modal proof rules which are

more general:

Theorem 3.3.1 ([Dev]). The proof rules in Fig. 3.2 are sound with respect to any fractional

heap model that satisfies modal axioms in Fig. 3.7 and 3.8. /

In §3.5 we will see what goes wrong if we assume the underlying semantic model satisfies D

for arbitrary π. For now we will just observe that the lack of axiom D has a few negative

consequences for the logic. In particular, the rules DotImpl and DotNeg are one directional

only (`), and we need a minor side condition (τ 6= ∅) for the a direction of DotUniv.

In addition, we can satisfy the rule π · |P | ` |P |, but not the rule |P | ` π · |P |. To get

bidirectionality our pure facts must force the empty heap, which is why we use 〈P 〉 def= |P |∧emp

in the DotPure rule.

There is, however, a special case: when π = F , the multiplicative identity, then not only

does � satisfy D, it satisfies the stronger axiom T (reflexivity). In the analogy, all n ∈ N

have a successor in the “factor-1” relation (i.e. n itself). Axiom T for F (plus CD for all π)

is why DotFull holds. One final advantage of our modal setup is that we can prove the

DotDot rule from a more general modal rule for combining boxy operators MSeq.

Chapter 3. Reasoning over disjoint fractional permissions 64

Our modal setup does not help us with the remaining 6 rules DotPure, DotPlus, and

DotStar, which must be proved individually on the model. In Figure 3.8 we have shown

the two directions of DotPlus separately so that it is clear that we only need precise(P) in

the a direction.

Proving the side conditions for DotPlus and DotStar. To use predicate multiplica-

tion in practice we will need to prove two kinds of side conditions: that P is π-uniform (i.e.

P ` uniform(π)) and that P is precise. Figure 3.9 contains the three basic axioms (again

deferring maps-to briefly) that allow us to prove uniformity for predicates such as list and

tree during program verifications. They are all simple to state: uniform/emp tells us that

emp is π-uniform for all π; the conclusion (all defined heap locations are held with share

π) is vacuously true. The uniformDot rule tells us that if P is π-uniform then when we

multiply P by a fraction π′ the result is (π′⊗ π)-uniform.

The uniform∗ rule is more interesting. The a direction follows from uniform/emp and the

∗emp rule (P ∗emp a` P). The ` direction is not automatic but very useful. One consequence

is that from P ` uniform(π) and Q ` uniform(π) we can prove P ∗ Q ` uniform(π). The `

direction follows from disjointness. On non-disjoint share models such as Q it fails since

e.g. x 0.37→ y ∗ x 0.37→ y ` x 0.67→ y; the two left maps-tos are 0.3-uniform whereas the right one is

0.6-uniform.

The DotPrecise rule is a partial solution to proving that a predicate is precise. It states

that π · P is precise if and only if P is precise. In §3.3.3 we will show how to prove that P

itself is precise.

Fractional maps-to. Figure 3.10 gives the proof theory we need to for our fractional maps-

to x π7→ y. The new rules in our context are the first three, the first of which (DotMapsTo)

was already given in Figure 3.2 and the second of which (7→ Uniform) is straightforward.

The third (7→ Inversion)is a little less obvious; it states that it’s impossible to have two

fractional maps-tos to the same address that point to different values. We need this fact to

e.g. prove that predicates such as tree that contain existentials are precise. The remaining

lemmas are all well-known facts: maps-to is precise (DotPrecise), non-empty (Dotemp),

Chapter 3. Reasoning over disjoint fractional permissions 65

and non-null (DotNull).

3.3.3 A proof theory for proving that predicates are precise

Proving that a predicate is π-uniform is relatively straightforward using the proof rules

presented so far. However, proving that a predicate is precise is not as pleasant. Traditionally

precision is defined (and checked for concrete predicates) in the metalogic [OHe07] using the

following definition:

precise(P) def= ∀h, h1, h2. h1 ⊆ h⇒ h2 ⊆ h⇒ (h1 |= P)⇒ (h2 |= P)⇒ h1 = h2. (3.5)

Here we write h1 ⊆ h2 to mean that h1 is a subheap of h2, i.e. ∃h′.h1 ⊕ h′ = h2, where ⊕ is

the joining operation on the underlying separation algebra [DHA09]. Essentially precision is

a kind of uniqueness property: if a predicate P is precise then it can only be true on a single

subheap.

Rather than checking precision in the metalogic, we wish to do so in the object logic. We

give a proof theory that lets us do so in Figure 3.11. Among other advantages, proving

precision in the object logic lets us to leverage the machinery for object-logic induction that

we present in §3.3.4 to prove the precision of recursive predicates. The core idea is simple:

we define a new object logic operator “precisely(P)” that captures the notion of precision

relativized to the current heap; essentially it is a partially applied version of the standard

definition of precise(P) in equation (3.5):

h |= precisely(P) def= ∀h1, h2.h1 ⊆ h⇒ h2 ⊆ h⇒ (h1 |= P)⇒ (h2 |= P)⇒ h1 = h2. (3.6)

Although we have given precisely’s model to aid intuition, we emphasize that in §3.3 all of

our proofs take place in the object logic; we never unfold precisely’s definition. Although on

first glace it may look modal, precisely is not in either its model (since it quantifies over two

worlds, not one) or in its proof theory (e.g. it does not satisfy axiom N). It is also generally

weaker than the typical notion of precision. For example, the predicate x 7→ 7 ∨ y 7→ 7

is not precise; however the entailment z 7→ 8 ` precisely(x 7→ 7 ∨ y 7→ 7) is provable from

Chapter 3. Reasoning over disjoint fractional permissions 66

Figure 3.11 (and it is vacuously true in the model).

That said, the two notions are closely connected as given in the preciselyPrecise rule.

We also give introduction preciselyRight and elimination rules preciselyLeft that make a

connection between precision and an “antidistribution” of ∗ over ∧.

We also give a number of rules for showing how precisely combines with the connectives of

our logic. The rules for propositional ∧ and separating ∗ conjunction follow well-understood

patterns, with the addition of an arbitrary premise context G being the key feature. The rule

for disjunction ∨ is a little trickier, with an additional premise that forces the disjunction to

be exclusive rather than inclusive. An example of such an exclusive disjunction is in the

standard definition of the tree predicate, where the first disjunct 〈x = null〉 is fundamentally

incompatible with the second disjunct ∃d, l, r.x 7→ d, l, r ∗ . . . since 7→ does not allow the

address to be null (by axiom 7→ null from Figure 3.10). The rules for universal quantification

∀ existential quantification ∃ are essentially generalizations of the rules for the traditional

conjunction ∧ and disjunction ∨.

Using these lemmas, it is straightforward to prove the precision of simple predicates such

as 〈x = null〉 ∨ (∃y.x 7→ y ∗ y 7→ 0). However, as we will see, finding and proving the key

lemmas that enable the proof of the precision of recursive predicates is a little subtle.

3.3.4 Proof theory for induction over the finiteness of the heap

Recursive predicates such as list(x) and tree(x) are extremely common in separation logic.

However, proving properties of such predicates, such as proving that list(x) is precise, is

a little tricky since the µFoldUnfold rule provided by the Tarski fixed point does not

automatically provide an induction principle. Generally speaking such properties follow by

some kind of induction argument, either over auxiliary parameters∗ or over the finiteness of

the heap itself. Both arguments usually occur in the metalogic rather than the object logic.

We have two contributions to make for proving inductive properties. First, we show how to do

∗e.g. if we augment trees to have the form tree(x, τ), where τ is an inductively-defined type in the
metalogic.

Chapter 3. Reasoning over disjoint fractional permissions 67

induction over the heap in a fractional setting. Intuitively this is more complicated than in the

non-fractional case because there are infinite sequences of strictly smaller subheaps. That is,

for a given initial heap h0, there are infinite sequences h1, h2, . . . such that h0) h1) h2)

The disjointness property does not fundamentally change this issue, so we illustrate with an

example with the shares in Q. The heap h0 satisfying x 17→ y is strictly larger than the heap

h1 satisfying x
1
27→ y, which is strictly larger than the heap h2 satisfying x

1
47→ y; in general

hi satisfies x
1
2i7→ y. Since our sequence never terminates, we cannot use it as the basis for

an induction argument. The solution is that we require that the heaps decrease by at least

some constant size c. If each subsequent heap must shrink by at least e.g. c = 0.25 of a

memory cell then eventually the sequence will terminate just as in the nonfractional case

(which is actually just the case when c = F).

Our second contribution is the development of a proof theory in the object logic that can

carry out these kinds of induction proofs in a relatively straightforward way. The proof rules

that let us do so are given in Figure 3.12. Once good lemmas are identified, we find doing

induction proofs over the finite heap formally in the object logic simpler than doing the same

proofs in the metalogic.

The key to our induction technique is two new modal operators: “within” } and “shrink-

ing” Bπ. Essentially BπP is used as an induction guard, preventing us from applying our

induction hypothesis P until we are on a π-smaller subheap. When π = F we sometimes

omit it, writing just BP . In the Kripke model for the modal operator, the definition of the

π-shrinking relation Sπ is a little subtle∗:

h1Sπh4
def= ∃h2, h3. h1 ⊇ h2 ∧ h3 ⊕ h4 = h2 ∧ (h3 |= uniform(π) ∧ ¬emp). (3.7)

The shrinking modality is just a modal box over the above relation BπP
def= �SπP . That is,

if h |= BπP then P is true on all strict subheaps of h that are smaller by at least a

π-piece. Given this understanding, the key elimination rule for Bπ (axiom Bπ∗) may seem

natural: essentially it is verifying that the induction hypothesis guarded by Bπ is satisfied.

∗As everywhere in §3.3, the model is for intuition only. All lemmas follow from the proof theory, not by
unfolding the model.

Chapter 3. Reasoning over disjoint fractional permissions 68

To start an induction proof to prove an arbitrary goal > ` P , we use the modal rule W to

introduce an induction hypothesis, resulting in the new entailment goal of BπP ` P .

Some definitions, such as list(x), have only one “recursive call”; others, such as tree(x) have

more than one. Moreover, sometimes we wish to apply our inductive hypothesis immediately

after satisfying the guard, whereas other times it is convenient to satisfy the guard somewhat

before we need the inductive hypothesis. To handle both of these issues we use the “within”

modality, defined as the boxy modality with relation h1Wh2
def= h1 ⊇ h2. In other words,

h |= }P means that P is true on all subheaps of h, which is the intuition behind the axiom

}∗. Since the subheap relation is reflexive, “within” satisfies axiom T. Generally speaking if

we wish to apply our induction hypothesis somewhat after meeting its guard (or if we wish

to apply it more than once) we use the Bπ} rule to add the } modality before eliminating

the guard. We will see an example of this shortly.

3.3.5 Using our proof theory

We now turn to two examples of using our proof theory from page 62 to demonstrate that

the axiom set is strong and flexible enough to prove real properties.

Proving that tree(x) is F-uniform. Recall that a predicate is π-uniform if any fractional

heap satisfies it must has permission π at every defined address. Our logical axioms for

induction and uniformity are able to establish the uniformity of predicates in a fairly simple

way. Here we focus on the tree(x) predicate because it is a little harder due to the two

recursive “calls” in its unfolding.

Our initial proof goal is tree(x) ` uniform(F). Standard natural deduction arguments then

reach the goal > ` ∀x.tree(x)⇒ uniform(F), after which we apply the W axiom (π = F is

convenient) to start the induction, adding the hypothesis B∀x.tree(x)⇒ uniform(F), which

we strengthen with the Bπ} rule to reach B} ∀x.tree(x)⇒ uniform(F). Natural deduction

from there reaches:

(
〈x = null〉 ∨ ∃d, l, r.x 7→ (d, l, r) ∗ tree(l) ∗ tree(r)

)
∧
(
B}∀x.tree(x)⇒ uniform(F)

)
` uniform(F).

Chapter 3. Reasoning over disjoint fractional permissions 69

The proof breaks into two cases. The first reduces to 〈x = null〉 ∧ (B · · ·) ` uniform(F),

which follows from the uniform/emp rule. The second case reduces to
(
x 7→ (d, l, r) ∗ tree(l) ∗

tree(r)
)
∧
(
B}∀x.tree(x)⇒ uniform(F)

)
` uniform(F). Using the uniform∗ rule we can then

reach:

(
x 7→ (d, l, r)∗ (tree(l)∗ tree(r))

)
∧
(
B}∀x.tree(x)⇒ uniform(F)

)
` uniform(F)∗uniform(F).

We are now able to cut with the Bπ∗ rule to meet the inductive guard since x 7→ (d, l, r) `

uniform(F) ∧ ¬emp due to the rules 7→uniform and 7→emp. Our remaining goal is thus:

(
x 7→ (d, l, r) ∧B · · ·

)
∗
(
(tree(l) ∗ tree(r)) ∧}∀x.tree(x)⇒ uniform(F)

)
` uniform(F) ∗ uniform(F).

We split over ∗. The first goal is x 7→ (d, l, r) ∧ B · · · ` uniform(F), which follows from

7→uniform. The second goal is (tree(l) ∗ tree(r)) ∧}∀x.tree(x)⇒ uniform(F)
)
` uniform(F).

We apply }∗ to distribute the inductive hypothesis into the ∗, and uniform∗ to split the

right hand side, yielding:

(
tree(l) ∧}∀x.tree(x)⇒uniform(F)

)
∗
(
tree(r) ∧}∀x.tree(x)⇒uniform(F)

)
`uniform(F) ∗uniform(F).

We again split over ∗ to reach two essentially identical cases. We apply axiom T to remove

the } and after standard manipulations reach e.g. ∀x.tree(x) ⇒ uniform(F) ` tree(l) ⇒

uniform(F), which is immediate. Further details on this proof can be found in Figure 3.13 in

which H def= ∀t. tree(t)⇒ U(F). Here we also use the following shortcuts for convenience:

US def= uniform∗, UE def= uniform/emp, UM def= 7→ uniform, ME def= 7→ emp, U(π) def= uniform(π).

Comment on completeness. Although our axioms for induction and uniformity are

powerful enough to be useful, they are not complete. It is hard to prove the following

predicate is F-uniform∗

tricky(x) a` x
0.57→ 0 ∗ 0.5 · tricky(x).

∗To help intuition this example uses shares in Q; similar games can occur in disjoint share models.

Chapter 3. Reasoning over disjoint fractional permissions 70

emp ` U(F) UE

〈x = null〉 ∧BF }H ` U(F)
. . .

x 7→ (d, t1, t2) ` U(F) ∧ ¬emp
UM+
ME (tree(t1) ∗ tree(t2)) ∧}H ` U(F) L3

x 7→ (d, t1, t2) ∗ (tree(t1) ∗ tree(t2)) ∧BF }H ` U(F) L2

tree(x) ∧BF }H ` U(F)
. . .

tree(x) ` U(F) L1

Main proof

tree(x) ∧BF }H ` U(F)
BF }H ` H

. . .

BFH ` H
Bπ}

` H W
tree(x) ` U(F)

. . .

Proof of L1

H ` tree(ti)⇒ U(F)
. . .

}H ` tree(ti)⇒ U(F) T

tree(ti) ∧}H ` U(F), i = 1, 2
. . .

(tree(t1) ∧}H) ∗ (tree(t2) ∧}H) ` U(F) ∗ U(F) }∗

tree(t1) ∗ tree(t2) ∧}H ` U(F) ∗ U(F)
. . .

tree(t1) ∗ tree(t2) ∧}H ` U(F) US

Proof of L3

P ` U(π) ∧ ¬emp
(P ∗Q) ∧BπR ` (P ∧BπR) ∗ (Q ∧R)

Bπ∗

P ` U(π) ∧ ¬emp
P ∧BπR ` U(π)

. . .
Q ∧R ` U(π)

(P ∧BπR) ∗ (Q ∧R) ` U(π) ∗ U(π)
. . .

(P ∧BπR) ∗ (Q ∧R) ` U(π) US

(P ∗Q) ∧BπR ` U(π)
. . .

Proof of L2

Figure 3.13: Proof that tree(x) is full-uniform

To do so we would need to add a notion of limits. Predicates like tricky(x) do not seem

practical.

Proving that list(x) is precise. Precision is a more complex property than π-uniformness,

so it is not surprising that it is harder to prove. Accordingly we will use the simpler predicate

list(x) as an example; the additional trick we need to prove that tree(x) is precise are

applications of the Bπ} and }∗ rules in the same manner as the proof that tree(x) is

F -uniform. We have proved that both list(x) and tree(x) are precise using our proof rules in

Coq [Dev].

In Figure 3.14 we give four key lemmas used in our proof∗. All four are derived (sometimes

∗We abuse notation by reusing the inference rule format used to present axioms to present derived lemmas
as well.

Chapter 3. Reasoning over disjoint fractional permissions 71

precisely(P) a` (P ∗ >)⇒ precisely(P) (A)
precise(P)

P ∗ precisely(Q) ` precisely(P ∗Q) (D)

Q ∧ (R ∗ >) ` precisely(R)

Q ∧ (S ∗ >) ` precisely(S)

(R ∗ >) ∧ (S ∗ >) ` ⊥

Q ∧
(
(R ∨ S) ∗ >

)
` precisely

(
R ∨ S

) (B)

∀x.
(
Q ∧

(
P (x) ∗ >

)
` precisely

(
P (x)

))
∀x, y.

((
P (x) ∗ >

)
∧
(
P (y) ∗ >

)
` |x = y|

)
Q ∧

((
∃x.P (x)

)
∗ >

)
` precisely

(
∃x.P

(
x
)) (C)

Figure 3.14: Key lemmas we use to prove recursive predicates precise

with a little cleverness) from the basic proof rules given in Figure 3.11. The basic structure

of the proof is as follows. To prove precise(list(x)) we first use the preciselyPrecise rule

to transform the goal into > ` precisely(list(x)). We cannot immediately apply axiom W,

however, since without a concrete ∗-separated conjunct outside the precisely, we cannot

dismiss the inductive guard with the Bπ∗ axiom. Accordingly, we next use lemma (A) and

standard natural deduction to reach the goal > ` ∀x.(list(x) ∗ >)⇒ precisely(list(x)), after

which we apply axiom W with π = F .

Afterwards we do some standard natural deduction steps yielding the goal

(
B ∀x.

(
list(x) ∗ >

)
⇒ precisely

(
list(x)

))
∧
((
〈x = null〉 ∨ ∃d, n.x 7→ (d, n) ∗ list(n)

)
∗ >

)
`

precisely
(
〈x = null〉 ∨ ∃d, n.x 7→ (d, n) ∗ list(n)

)
.

We are now in a position to apply lemma (B) to break up the disjunction. We now have

three goals. The first goal is that 〈x = null〉 is precise, which follows from the fact that

emp is precise, which in turn can be proved using the axiom preciselyRight. The third goal

is that the two branches of the disjunction are mutually incompatible, which follows from

〈x = null〉 being incompatible with maps-to using axiom 7→ null. The second (and last

remaining) goal needs to use lemma (C) twice to break up the existentials. Two of the three

new goals are to show that the two existentials are uniquely determined, which follow from

Chapter 3. Reasoning over disjoint fractional permissions 72

> ` precisely(emp)
precisely
Right

BP ∧ (〈x = null〉 ∗ >)
` precisely(〈x = null〉)

. . .
BP ∧ (∃d, n.x 7→ (d, n) ∗ list(n)) `
precisely(∃d, n.x 7→ (d, n) ∗ list(n))

L1 (〈x = null〉 ∗ >) ∧
(∃d, n.x 7→ (d, n) ∗ list(n) ∗ >) ` ⊥

7→
null

BP ∧
(
(〈x = null〉 ∨ ∃d, n.x 7→ (d, n) ∗ list(n)) ∗ >

)
` precisely(〈x = null〉 ∨ ∃d, n.x 7→ (d, n) ∗ list(n))

(B)

B∀x.(list(x) ∗ > ⇒ precisely(list(x))) ` ∀x.(list(x) ∗ > ⇒ precisely(list(x)))
. . .

> ` ∀x.(list(x) ∗ > ⇒ precisely(list(x))) W

> ` precisely(list(x)) (A) . . .

precise(list(x)) preciselyPrecise

Main proof

BP ∧ (x 7→ (d, n) ∗ list(n) ∗ >) `
precisely(x 7→ (d, n) ∗ list(n))

L2 (x 7→ (d, n1) ∗ list(n1) ∗ >) ∧
(x 7→ (d, n2) ∗ list(n2) ∗ >)

` |n1 = n2|

7→ I

BP ∧ (∃n.x 7→ (d, n) ∗ list(n) ∗ >) ` precisely(∃n.x 7→ (d, n) ∗ list(n)) (C) (∃n.x 7→ (d1, n) ∗ list(n) ∗ >) ∧
(∃n.x 7→ (d2, n) ∗ list(n) ∗ >)

` |d1 = d2|

7→ I

BP ∧ (∃d, n.x 7→ (d, n) ∗ list(n)) ` precisely(∃d, n.x 7→ (d, n) ∗ list(n)) (C)

Proof of L1

BP ∧ (x 7→ (d, n) ∗ list(n) ∗ >) `
x 7→ (d, n) ∗ precisely(list(n))

Bπ∗
precise(x 7→ (d, n)) 7→ Precise

BP ∧ (x 7→ (d, n) ∗ list(n) ∗ >) `
precisely(x 7→ (d, n) ∗ list(n))

(D)

Proof of L2

Figure 3.15: Proof that list(x) is precise.

7→Inversion, leaving the goal

(
B ∀x.

(
list(x)∗>

)
⇒precisely

(
list(x)

))
∧
(
x 7→(d, n)∗

(
list(n)∗>

))
` precisely

(
x 7→

(
d, n

)
∗list

(
n
))
.

We now cut with lemma (D), using axiom 7→precise to prove its premise, yielding the goal

(
B ∀x.

(
list(x)∗>

)
⇒precisely

(
list(x)

))
∧
(
x 7→(d, n)∗

(
list(n)∗>

))
` x 7→

(
d, n

)
∗precisely

(
list
(
n
))
.

We can now use the Bπ∗ axiom to defeat the inductive guard. The rest of the proof is

straightforward. Details of the above proof can be found in Figure. 3.15 in which 7→ I is

shortcut for the rule 7→ Inversion.

Chapter 3. Reasoning over disjoint fractional permissions 73

3.4 Soundness proof: Building a model for our logic

To justify the correctness of our proof theories on page 62, we will provide a heap model

that satisfy them. We have verified in Coq [Dev] that the models we provide in §3.4 enable

the proof theory explained and demonstrated in §3.3.

We present our models in several parts. In §3.4.1 we begin with a brief review of Cancellative

Separation Algebras (CSA). In §3.4.2 we explain what we need from our fractional share

models. In §3.4.3 we develop an extension to CSAs called “Scaling Separation Algebras”

(SSA). In §3.4.4 we give some constructors for building more complex SSAs out of simpler

ones, and apply this technique to generate a simple concrete model for our logic. In §3.4.5

we develop the machinery necessary to support our rules for object-level induction over heap.

3.4.1 Cancellative separation algebras

A Separation Algebra (SA) is a set H with an associative, commutative partial operation ⊕.

Separation algebras can have a single unit or multiple units; we use identity(x) to indicate that

x is a unit. A Cancellative SA 〈H,⊕〉 further requires that a⊕b1 = c⇒ a⊕b2 = c⇒ b1 = b2.

We can define a partial order on H using ⊕ by h1 ⊆ h2
def= ∃h′.h1 ⊕ h′ = h2. Calcagno et

al. [COY07] showed that CSAs can model separation logic via h |= P ∗Q def= ∃h1, h2.h1⊕h2 =

h ∧ (h1 |= P) ∧ (h2 |= Q), h |= emp def= identity(h), etc., from which our base proof theory

from §3.3.1 follows.

If R is a binary relation over H, then the Kripke model for �R is h |= �RP
def= ∀h′.hRh′ ⇒

h′ |= P and for ♦R is h |= ♦RP
def= ∃h′.hRh′ ∧ h′ |= P . The modal axioms N, K, BF, and

♦� are immediate.

The standard definition of precise(P) was given as equation (3.5) in §3.3.3, together with

the definition for our new precisely(P) operator in equation (3.6). What is difficult here is

finding a set of axioms (Figure 3.11) and derivable lemmas (e.g. Figure 3.14) that are strong

enough to be useful in the object-level inductive proofs. Once the axioms are found, proving

them from the model given is straightforward. Cancellation is not necessary to model basic

separation logic [DYBG+13], but we need it to prove the introduction preciselyRight and

Chapter 3. Reasoning over disjoint fractional permissions 74

elimination rules preciselyLeft for our new operator precisely.

3.4.2 Fractional share algebras

A fractional share algebra 〈S,⊕,⊗, E ,F〉 is a set S with two operations: partial addition ⊕

and total multiplication ⊗. The substructure 〈S,⊕〉 is a CSA with the single unit E . For the

reasons discussed in 3.5 we require that ⊕ satisfies the disjointness axiom a⊕ a = b⇒ a = E .

Furthermore, we require that the existence of a top element F , representing complete

ownership, and assume that each element s ∈ S has a complement s such that s⊕ s = F .

Often (e.g. in the fractional 7→ operator) we wish to restrict ourselves to the “positive

shares” S+ def= S \ {E}. To emphasize that a share is positive we often use the metavariable

π rather than s. ⊕ is still associative, commutative, and cancellative; every element

other than Fstill has a complement. To enjoy a partial order on S+ and other SA- or

CSA-like structures that lack identities (sometimes called “permission algebras”) we define

π1 ⊆ π2
def= (∃π′.π1 ⊕ π′ = π2) ∨ (π1 = π2).

For the multiplicative structure we require that 〈S,⊗,F〉 be a monoid, i.e. that ⊗ is

associative and has identity F . Since we restrict maps-tos and the permission scaling operator

to be positive, we want 〈S+,⊗,F〉 to be a submonoid. Accordingly, when {π1, π2} ⊂ S+, we

require that π1 ⊗ π2 6= E . Finally, we require that ⊗ distributes over ⊕ on the right, that is

(s1 ⊕ s2)⊗ s3 = (s1 ⊗ s3)⊕ (s2 ⊗ s3); and that ⊗ is cancellative on the right given a positive

left multiplicand, i.e. π ⊗ s1 = π ⊗ s2 ⇒ s1 = s2.

The tree share model we present in §3.6.2 satisfies all of the above axioms, so we have a

nontrivial model. As we will see shortly, it would be very convenient if we could assume that

⊗ also distributed on the left, or if we had multiplicative inverses on the left rather than

merely cancelation on the right. However, we will see in §3.5.2 that both assumptions are

untenable.

Chapter 3. Reasoning over disjoint fractional permissions 75

S1. force(π, force(π′, a)) = force(π, a) S2. force(π,mul(π′, a)) = force(π, a)

S3. mul(π, force(π′, a)) = force(π ⊗S π′, a) S4. mul(π,mul(π′, a)) = mul(π ⊗S π′, a)

S5. identity(a)⇒ force(π, a) = a S6. a ⊆H force(F , a)

S7. π1 ⊆S π2 ⇒ force(π1, a) ⊆H force(π2, a) S8. force(π, a)⊕H force(π, b)=c⇒ force(π, c)=c

S9. identity(a)⇒ mul(π, a) = a S10. mul(F , a) = a

S11. mul(π, a1) = mul(π, a2)⇒ a1 = a2 S12. mul(π, a) ⊆H a

S13. π1 ⊕S π2 = π3 ⇒ ∀b, c.
((

mul(π1, b)⊕H mul(π2, b) = c
)
⇔
(
c = mul(π3, b)

))
S14. force(π′, a)⊕H force(π′, b) = force(π′, c) ⇔

mul
(
π, force(π′, a)

)
⊕H mul

(
π, force(π′, b)

)
= mul

(
π, force(π′, c)

)
Figure 3.16: The 14 additional axioms for scaling separation algebras beyond those
inherited from cancellative separation algebras

3.4.3 Scaling separation algebras

A scaling separation algebra is 〈H,S,⊕H ,⊕S ,⊗S , E ,F ,mul, force〉, where 〈H,⊕H〉 is a CSA

and 〈S,⊕S ,⊗S , E ,F〉 is a fractional share algebra. Intuitively, mul(π, h1) multiplies every

share inside h1 by π and returns the resulting heap h2. The multiplication occurs on the left,

so for each original share π′ in h1, the resulting share in h2 is becomes π ⊗S π′. The even

simpler force(π, h1) simply overwrites all shares in h1 with the constant share π to reach the

resulting heap h2.

As explained in §3.3.2 we can define the “factor-π” relation Fπ by h1Fπh2
def= mul(π, h2) = h1,

and predicate multiplication π · P as ♦FπP . The dual operator π � P is just �FπP . We

use force to define the uniform predicate as h |= uniform(π) def= force(π, h) = h. A heap h is

π-uniform when replacing all the shares in h with π gets you back to h—i.e., they must have

been π to begin with.

We need to understand how all of the ingredients in an SSA relate to each other to prove

the core logical axioms in Figures 3.8 and 3.9. We distill the various relationships we need

to model our logic in Figure 3.16. Although there are a goodly number of them, most are

reasonably intuitive.

Chapter 3. Reasoning over disjoint fractional permissions 76

Axioms S1 through S4 straightforwardly describe how force and mul compose with each

other. Axioms S5, S9, and S10 give conditions when force and mul are identity functions:

when either is applied to identity/empty heaps, and when mul is applied to the multiplicative

identity on shares F . Axioms S6 and S12 relate heap order with forcing the full share F and

multiplication by an arbitrary share π. Axiom S7 says that force is order-preserving. Axiom

S8 is how the disjointness axiom on shares is expressed on heaps: when two π-uniform heaps

are joined, the result is π-uniform. Axiom S11 says that mul is injective over heaps. Axiom

S13 is delicately stated. In the right-to-left direction of ⇔, it states that mul preserves the

share model’s join structure on heaps. In the left-to-right direction, S13 is similar to axiom

S8, saying that the share model’s join structure must be preserved. Taking both directions

together, S13 translates the right distribution property of ⊕S over ⊗S into heaps. The final

axiom S14 is a bit of a compromise. We wish we could satisfy:

S′14. a⊕H b = c ⇔ mul(π, a)⊕H mul(π, b) = mul(π, c).

S′14 is a kind of dual for S13, i.e. it would correspond to a left distributivity property of ⊕S

over ⊗S in the share model into heaps. We also wish we could satisfy:

S′15 : ∀π, a.∃b. mul(π, b) = a.

which would correspond to the existence of left multiplicative inverses on shares. Unfortu-

nately, as we will see in §3.5.2, the disjointness of ⊕S is incompatible with simultaneously

supporting both left and right distributivity; as well as with multiplicative inverses. Accord-

ingly, S14 weakens S′14 so that it only holds when a and b are π′-uniform (which by S8 forces

c to be π′-uniform as well).

The axioms from Figure 3.16 are enough to prove all of the logical rules in Figures 3.8

and 3.9. uniform/emp follows from S5 and uniform∗ from S8 and S5 in the ` and a directions,

respectively. uniformDot follows from S2, S3, and S11. Axiom CD also follows from S11,

T from S10, MSeq from S4, DotPure S9, DotPlus1 from S13, and the ⇑ direction of

DotPrecise from S11 and S12.

Chapter 3. Reasoning over disjoint fractional permissions 77

The remaining rules, DotPlus2, the ⇓ direction of DotPrecise, and both directions of

DotStar, are harder to prove. The first two of those use S2, S6, and S8 to find a heap

large enough to contain two copies of a precise predicate; DotPlus2 also uses S13. Both

directions of DotStar follow from S3, S8, and S14; recall that S8 is how disjointness on the

share model is translated into heaps.

If we could satisfy S′14, we could remove the π′-uniform premises of DotStar; the proof is

straightforward. S′15 would enable modal axiom D, i.e. π�P ` π ·P . In §3.3.2 we mentioned

that D would yield some pleasant consequences such as a bidirectional DotImpl rule.

We establish the formal connection between SSAs and our proof theories by showing that

the proposed axioms are sufficient to guarantee the soundness of the proof rules for predicate

multiplication, precision and uniformity:

Theorem 3.4.1 ([Dev]). The proof theories in Fig. 3.8, 3.9, 3.10, 3.11 together with standard

modal axioms N, K, BF, �� in Fig. 3.7 are sound with respect to any fractional heap model

that satisfies the SSA axioms, i.e. CSA axioms [COY07] and 14 axioms in Fig. 3.16. /

3.4.4 Compositionality of scaling separation algebras

Despite their complex axiomatization, we gain two advantages from developing SSAs rather

than directly proving our logical axioms on a concrete model. First, they give us a precise

understanding of exactly which operations and properties (S1–S14) are used to prove the

logical axioms. Second, following Dockins et al. [DHA09] we can build up large SSAs

compositionally from smaller SSAs.

To do so cleanly it will be convenient to consider a slight variant of SSAs, “Weak SSAs” that

allow, but do not require, the existence of identity elements in the underlying CSA model.

A WSSA satisfies exactly the same axioms as an SSA, except that we use the weaker ⊆H

definition we defined for permission algebras, i.e. a1 ⊆H a2
def= (∃a′.a1⊕H a′ = a2)∨(a1 = a2).

Note that S5 and S9 are vacuously true when the CSA does not have identity elements. We

need identity elements to prove the logical axioms from the model; we only use WSSAs to

gain compositionality as we construct a suitable final SSA. Keeping the share components

〈S,⊕S ,⊗S , E ,F〉 constant, we give three SSA constructors to get a flavor for what we can

Chapter 3. Reasoning over disjoint fractional permissions 78

do with the remaining components 〈H,⊕H , force,mul〉. For convenience, we will omit

unchanged components/operators during the construction.

Example 3.4.1 (Shares). The share model itself 〈S,⊕S ,⊗S〉 is an SSA, and the positive (non-

E) shares 〈S+,⊕S ,⊗S〉 are a WSSA, with forceS(π, π′) def= π and mulS(π, π′) def= π ⊗ π′. /

Example 3.4.2 (Semiproduct). Let 〈A,⊕A, forceA,mulA〉 be an SSA/WSSA, and B be a

set. Define:

(a1, b1)⊕A×B (a2, b2) = (a3, b3) def= a1 ⊕A a2 = a3 ∧ b1 = b2 = b3

forceA×B(π, (a, b)) def= (forceA(π, a), b) mulA×B(π, (a, b)) def= (mulA(π, a), b)

Then 〈A×B,⊕A×B, forceA×B,mulA×B〉 is an SSA/WSSA. /

Example 3.4.3 (Finite partial map). Let A be a set and 〈B,⊕B, forceB,mulB〉 be an

SSA/WSSA. Define f ⊕
A

fin
⇀B

g = h pointwise [DHA09]. Define:

force
A

fin
⇀B

(π, f) def= λx.forceB(π, f(x)) mul
A

fin
⇀B

(π, f) def= λx.mulB(π, f(x))

The structure 〈A fin
⇀ B,⊕

A
fin
⇀B

, force
A

fin
⇀B

,mul
A

fin
⇀B
〉 is an SSA. /

Example 3.4.4 (Read-only permission). Let 〈A,⊕A,⊗S , forceA,mulA〉 be an SSA/WSSA

and r 6∈ A is a special read-only permission. Define 〈A ∪ {r},⊕A′ ,⊗S , forceA′ ,mulA′〉 s.t.:

r ⊕A′ r
def= r r ⊕A′ π and π ⊕A′ r are not defined for π ∈ S

forceA′(π, r)
def= r mulA′(π, r)

def= r

Then 〈A ∪ {r},⊕A′ ,⊗S , forceA′ ,mulA′〉 is a new SSA/WSSA. /

Using the previous constructors it is immediate that A fin
⇀ (S+, V), that is finite partial maps

from addresses to pairs of positive shares and values, is an SSA and thus can support a

model for our logic. We can support other standard constructions such as sum types + as

well.

Once we have a concrete model we prove the proof theory axioms about maps-to that we

state in Figure 3.10. For concrete heaps all of these properties are easy to prove.

Chapter 3. Reasoning over disjoint fractional permissions 79

3.4.5 Model for inductive logic

What remains is to give the model that yields the inductive logic in Fig. 3.12. In §3.3.4 we

gave the model for the key Bπ inductive guard in equation (3.7). The model is a little subtle

to enable the rules Bπ} and }Bπ that let us handle multiple recursive calls and simplify the

engineering.

All of the rules follow from the definitions except for axiom W. To prove this axiom, we

require that the heap model have an additional operator. The “π-quantum”, written |h|π,

gives the number of times a non-empty π-sized piece can be taken out of h. For rational

shares, |h|π is computed as the sum of floors of all permissions in h divided by π. For disjoint

shares, the number of times is no more than the number of defined memory locations in h.

We require two facts for |h|π:

Q1. First, that h1 ⊆H h2 ⇒ |h1|π ≤ |h2|π, i.e. that subheaps do not have larger π-quanta

than their parent.

Q2. Second, that h1 ⊕H h2 = h3 ⇒ (h2 |= uniform(π) ∧ ¬emp) ⇒ |h3|π > |h1|π, i.e. that

taking out a π-piece strictly decreases the number of π-quanta.

Given this setup, axiom W follows immediately by induction on |h|π. The axioms that

require the longest proofs in the model are Bπ} and }Bπ.

Theorem 3.4.2 ([Dev]). The induction proof theory in Fig. 3.12 is sound with respect to

any SSA heap model that also satisfies Q1 and Q2. /

3.5 Lower bounds on predicate multiplication and disjoint

shares

In §3.4 we showed that the logical axioms we presented on page 62 have a model (deferring

until §3.6.2 the construction of the share model itself). In §3.3 we explained why those

logical axioms in turn yield the proof rules for predicate multiplication discussed in §3.1.

Our goal for this section is to show that it is difficult to do better. Stated differently, §3.3

and §3.4 show what we can do; §3.5 discusses what we cannot do. We proceed in two parts.

Chapter 3. Reasoning over disjoint fractional permissions 80

First (§3.5.1) we explain how our key proof rules for predicate multiplication—and some

stronger rules, such as a premise-free DotStar and bidirectional DotImpl—force properties

on the share model. Second (§3.5.2) we show that disjointness puts meaningful restrictions

on the class of share models. There are no nontrivial models that have left inverses or that

satisfy both left and right distributivity.

3.5.1 Predicate multiplication’s axioms force share model properties

The SSA structures we gave in §3.4.3, together with the connection to modal logic given

in §3.3, are good for building models that enable the rules for predicate multiplication

from Figure 3.2. However, since they impose intermediate algebraic and logical signatures

between the concrete model and rules for predicate multiplication, they are not good for

showing that we cannot do better. Accordingly here we disintermediate and focus on

the concrete model A fin
⇀ (S+, V), that is finite partial maps from addresses to pairs of

positive shares and values. The join operations on heaps operates pointwise [DHA09], with

(π1, v1)⊕ (π2, v2) = (π3, v3) def= π1 ⊕S π2 = π3 ∧ v1 = v2 = v3, from which we derive the usual

SA model for ∗ and emp (§3.4.1). We define h |= x
π7→ y

def= dom(h) = {x}∧h(x) = (π, y). We

define scalar multiplication over heaps ⊗H pointwise as well, with π1⊗(π2, v) def= (π1⊗S π2, v),

and then define predicate multiplication by h |= π · P def= ∃h′. h′ = π ⊗H h′ = h ∧ h′ |= P .

All of the above definitions are standard except for ⊗H , which strikes us as the only choice

(up to commutativity), and predicate multiplication itself, for which we have been unable to

find any plausible alternative.

By §3.3 and §3.4 we already know that this model satisfies the rules for predicate multipli-

cation, given the assumptions on the share model from §3.4.2. What is interesting is that

we can prove the other direction: if we assume that the key logical rules from Figure 3.2

hold, they force axioms on the share model. The key correspondences are: DotFull forces

that F is the left identity of ⊗S ; DotMapsTo forces that F is the right identity of ⊗S ;

DotMapsTo forces the associativity of ⊗S ; the a direction of DotConj forces the right

cancellativity of ⊗S (as does DotImpl and the a direction of DotUniv); and DotPlus,

which forces right distributivity of ⊗S over ⊕S . Additional details about these necessary

Chapter 3. Reasoning over disjoint fractional permissions 81

conditions can be found in Appendix A.1.

The following two rules force left distributivity of ⊗S over ⊕S and left ⊗S inverses, respec-

tively:

π · (P ∗Q) a` (π · P) ∗ (π ·Q) DotStar′
π · (P ⇒ Q) a (π · P)⇒ (π ·Q) DotImpl′

The a direction of DotStar’ also forces that ⊕S satisfies disjointness; this is the key

reason that we cannot use 〈Q,+,×, 0, 1〉 for our share model. Clearly the side-condition-free

DotStar′ rule is preferable to the DotStar we give in Figure 3.2, and it would also be

preferable to have bidirectionality for predicate multiplication over implication and negation.

Unfortunately, as we will see shortly, the disjointness of ⊕S places strong multiplicative

algebraic constraints on the share model. These constraints are the reason we cannot support

the DotImpl′ rule and why we require the π′-uniformity side condition in our DotStar

rule.

3.5.2 Disjointness in a multiplicative setting

Our goal now is to explore the algebraic consequences of the disjointness property in a

multiplicative setting. Suppose 〈S,⊕〉 is a CSA with a single unit E , top element F , and ⊕

complements s. Suppose further that shares satisfy the disjointness property a⊕ a = b⇒

a = E . For the multiplicative structure, assume 〈S,⊗,F〉 is a monoid (i.e. the axioms forced

by the DotDot, DotMapsTo, and DotFull rules). It is undesirable for a share model if

multiplying two positive shares (e.g. the ability to read a memory cell) results in the empty

permission, so we assume that when π1 and π2 are non-E then their product π1 ⊗ π2 6= E .

Now add left or right distributivity. We choose right distributivity (s1 ⊕ s2)⊗ s3 = (s1 ⊗

s3) ⊕ (s2 ⊗ s3); the situation is mirrored with left. Let us show that we cannot have left

inverses for π 6= F . We prove by contradiction: suppose π 6= F and there exists π−1 such

that π−1 ⊗ π = F . Then

π = F ⊗ π = (π−1 ⊕ π−1)⊗ π = (π−1 ⊗ π)⊕ (π−1 ⊗ π) = F ⊕ (π−1 ⊗ π).

Chapter 3. Reasoning over disjoint fractional permissions 82

Let e = π−1⊗ π. Now π = F ⊕ e = (e⊕ e)⊕ e, which by associativity and disjointness forces

e = E , which in turn forces π = F , a contradiction.

Now suppose that instead of adding multiplicative inverses we have both left and right

distributivity. First we prove (lemma 1) that for arbitrary s ∈ S, s⊗ s = s⊗ s. We calculate:

(s⊗ s)⊕ (s⊗ s) = s⊗ (s⊕ s) = s⊗F = s = F ⊗ s = (s⊕ s)⊗ s = (s⊗ s)⊕ (s⊗ s).

Lemma 1 follows by the cancellativity of ⊕ between the far left and the far right.

Now we show (lemma 2) that s⊗ s = E . We calculate:

F = F⊗F = (s⊕s)⊗(s⊕s) = (s⊗s)⊕(s⊗s)⊕(s⊗s)⊕(s⊗s) = (s⊗s)⊕(s⊗ s)⊕ (s⊗ s)⊕(s⊗s).

The final equality is by lemma 1. The underlined portion implies s⊗ s = E by disjointness.

The upshot of lemma 2, together with our requirement that the product of two positive

shares be positive, is that we can have no more than the two elements E and F in our share

model. Further details about the above proofs can be found in Appendix A.2.

Since the entire motivation for fractional share models is to allow ownership between E and

F , we must choose either left or right distributivity; we choose right since we are able to

prove that the π′-uniformity side condition enables the bidirectional DotStar rule without

left distributivity.

3.6 Share models

3.6.1 The shortcoming of rational permissions

The separating conjunction ∗ provides a convenient representation for disjointness when

specifying assertion conditions. However, it would be mistaken to assume the disjointness

property in fractional heaps with permissions in (0, 1]. We demonstrate this issue using the

function createTree(Tree t1,Tree t2, int v) in Fig. 3.17 that creates a new binary tree with

root value v, left subtree t1 and right subtree t2. If t1 and t2 are disjoint then in the standard

Chapter 3. Reasoning over disjoint fractional permissions 83

1 class Tree{Tree left ,right; int value ;}
2
3 Tree createTree (Tree t1 , Tree t2 , int v){
4 // {P} Precondition that specifies two trees t1 and t2 are disjoint
5 Tree root = new Tree ();
6 root.left = t1; root.right = t2; root.value = v;
7 // {Q} Postcondition that specifies root is a tree
8 return root; }

Figure 3.17: A Java-like code that creates a binary trees from two disjoint trees

heap model, the precondition P can be precisely specified as tree(t1) ∗ tree(t2). From there,

it is straightforward to prove the postcondition Q as tree(root). Unfortunately, this proof

cannot be generalized to rational permissions because we lose the disjointness property. For

example, the predicate 0.25 · tree(t1) ∗ 0.25 · tree(t2) no longer captures the fact that t1, t2

are disjoint. Consequently, it is challenging to develop proof rules for automatic tools to

deal with such circumstances.

Furthermore, the lack of disjointness in rational permissions significantly weakens the

abductive inference when constructing the anti-frame. Consider the following abduction

problem:

x 7→ (v, x1, x2) ∗ tree(x1) ∗ [??] ` tree(x).

Using the folding rule F2, we can easily identify the anti-frame as tree(x2). Now suppose we

have a rational permission π distributed all over the two hand sides, i.e.:

x
π7−→ (v, x1, x2) ∗ π · tree(x1) ∗ [??] ` π · tree(x).

A naïve solution is to let the anti-frame be π · tree(x2). However, this entailment is false in

general by the same reason for the precondition P in Fig. 3.17.

Last but not least, we recall the overlap operator ∪∗ which was used in graph verification[HV13].

In detail, h |= P ∪∗ Q if there exist disjoint heaps h1, h2, h3 such that h = h1 ⊕ h2 ⊕ h3,

h1 ⊕ h2 |= P and h2 ⊕ h3 |= Q. In [HV13], precision is one of the critical preconditions

for proof rules and it was shown if P,Q are precise then P ∪∗ Q is also precise. However,

this property is lost in rational heaps, e.g., x 0.67−−→ 1 ∪∗ x 0.67−−→ 1 is satisfied by any heap h s.t.

Chapter 3. Reasoning over disjoint fractional permissions 84

dom(h) = {x} and h(x) = (1, π) for 1 ≥ π ≥ 0.6.

3.6.2 The tree share model for fractional shares

Existing results on the tree share model of Dockins et al. [DHA09]. Here we

recall several several key characteristics of the tree shares in §2.2.1. A tree share τ ∈ T is a

binary tree with Boolean leaves, i.e. τ = • | ◦ |
τ1 τ2

, where ◦ is the empty share E and •

is the full share F . Trees must be in canonical form, i.e., the most compact representation

under the relation ∼=:

◦ ∼= ◦ • ∼= • ◦ ∼=
◦ ◦

• ∼=
• •

τ1 ∼= τ ′1 τ2 ∼= τ ′2

τ1 τ2

∼=
τ ′1 τ ′2

Tree shares are equipped with basic operators union t, intersection u and complement

·̄ that operate leafwise after unfolding the operands under ∼= into the same shape. Tree

shares 〈T,t,u, ·̄, ◦, •〉 form a countable atomless Boolean algebra and thus enjoy decidable

existential and first-order theories with precisely known complexity bounds [LHL16]. The

join operator ⊕ on trees is defined as τ1 ⊕ τ2 = τ3
def= τ1 t τ2 = τ3 ∧ τ1 u τ2 = ◦. Dockins

et al. defined a notion of multiplication on trees that they wrote as τ1 ./ τ2; our notion

of multiplication flips the operands: τ1 ⊗ τ2
def= τ2 ./ τ1, which makes our proof rules more

pleasant to state. Multiplication ⊗ works by replacing all of the • leaves in τ2 with copies

of τ1, e.g.,
◦ •

⊗
• ◦

=
◦ • ◦

. The structure 〈T,⊗〉 is isomorphic to word equations,

implying a decidable existential and undecidable first-order theory. By restricting ⊗ to have

a constant on the left-hand side, i.e. ⊗τ (x) def= τ ⊗ x then we recover a decidable first-order

theory, even if we also admit the Boolean operators t, u, and ·̄ [LHL16].

Our contribution to the tree share model. Our major contribution to the under-

standing of tree shares is proving that they have the axioms we require for share models

(§3.4.2) and proving that they form an SSA (§3.4.4), thereby allowing them to be used with

predicate multiplication. Their suitability as models has been verified in Coq:

Chapter 3. Reasoning over disjoint fractional permissions 85

Theorem 3.6.1 ([Dev]). The fractional heap model with tree share permissions is a SSA. /

We also show that in some important senses tree shares are difficult to improve upon

algebraically (§3.5.2). We observe that the restriction to a family of unary multiplication

operators—that is, to a decidable first-order subtheory—is acceptable for verification purposes

because it allows us to use a share variable in our specifications, which we can then split

into a constant number of pieces. Since each basic block of a program is of finite length,

this is sufficient. Finally, in §3.2, we introduced the subtraction operator 	 to compute the

residues in bi-abductive inference, which we can define as:

π1 	 π2
def= π1 u π2.

3.6.3 Applications of tree shares

While tree shares can be modeled for SSA, they require a certain amount of accounting

to manipulate. Furthermore, different permission applications require different types of

manipulations, e.g., programs with semaphores/locks need token-counting permissions

whereas fork/join programs need permissions for splitting and combining. As a result, we

will show how to apply tree shares to reason various program types while help reduce the

accounting nuisance by encapsulating tree shares into abstractions that are user-friendly yet

still serve the desirable purposes.

Token-counting permissions Bornat et al. [BCOP05] introduced the token-counting

permissions using integers Z = 〈Z,+〉 in which x
07−→ v indicates the full permission over

address x∗, x n7−→ v denotes the factory permission† and x −17−−→ v is the read permission/token.

A fresh address starts with the full/factory permission which can be subsequently split into a

factory and write permission using the rule x n7−→ v a` x n+17−−→ v ∗ x −17−−→ v. Such permissions

are useful to reason about programs with semaphores such as readers-and-writers [CHP71]

and pipeline processing [JK03] where read permissions to buffers are passed within the

∗which is essential for memory allocation/deallocation.
†n also indicates the number of read permissions that have been generated.

Chapter 3. Reasoning over disjoint fractional permissions 86

thread pool. Here we model counting permissions using subsets of tree shares F for factory

permissions and R for read-only permissions:

F def= {fi | f0 = •, fi+1 =
◦ •

⊗ fi} R def= {ri | ri =
• ◦

⊗ fi}.

Consequently, a factory fi can be split into a read token and another factory by the identities:

fi = fi+1 ⊕ ri
precise(P)

fi · P a` (fi+1 · P) ∗ (ri · P) Split

The first fi and ri are f0 = •, f1 =
◦ •

, f2 =
◦ ◦ •

, . . . and r0 =
• ◦

, r1 =
◦ • ◦

, . . .

Furthermore, the number of generated read tokens is encoded in the factory: exactly its

height. For example, the height of f2 is 2 and thus two read tokens are generated: r0 and

r1.

Binary-string permissions While the previous read-only Ro provides a convenient ab-

straction over tree shares, its main shortcoming is that the original permission cannot be

retrieved back once turned into read-only. As a result, it is inapplicable for programs

with fork/join style [LCT15, JP11, HAZ08] where threads synchronize together with their

resources and recover the write/deallocate permissions. We tackle this problem by propos-

ing the binary-string structure S = 〈{0, 1}∗,⊕s,⊗s〉 that compromises between read-only

permissions and tree shares. In detail, each binary string in S is essentially a tree share in T

and thus S requires less accounting computation. On the other hand, it is more powerful

than read-only permissions because all the inference rules are bi-directional.

To be precise, the empty string ε corresponds to full share •; and if s is the tree τ then

0s and 1s correspond to
• ◦

⊗ τ and
◦ •

⊗ τ . Also, addition s1 ⊕s s2 = s3 is defined

if one of s1, s2 is 0s3 and the other is 1s3; while multiplication s1 ⊗s s2 is simply string

concatenation s1 · s2. Consequently, the structure S is essentially a sub-structure of T with

simpler representation and thus inherits properties of T . Next, we define Ros with a binary

string subscript as h, ρ |= Ros(P) def= h, ρ |= s · P . Using scaling rules, we can derive the

Chapter 3. Reasoning over disjoint fractional permissions 87

following rules for our new read-only string permissions:

S1 : P a` Roε(P) S2 : Ros1(Ros2(P)) a` Ros1·s2(P)

S3 : precise(P)⇒ (Ro0s(P) ∗ Ro1s(P) ` Ros(P)) S4 : Ros(P) ` Ro0s(P) ∗ Ro1s(P)

S5 : P1, P2 ` U(s′)⇒ (Ros(P ∗Q) a` Ros(P) ∗ Ros(Q)) S6 : Ros(P ∧Q) a` Ros(P) ∧ Ros(Q)

S7 : Ros(P ∨Q) a` Ros(P) ∨ Ros(Q) S8 : Ros(∃v : τ. P) a` ∃v. Ros(P)

S9 : τ 6= ∅ ⇒ (Ros(∀v : τ. P) a` ∀v. Ros(P))

3.7 The ShareInfer fractional biabduction engine

Having described our logical machinery in §3.1–§3.3, we now demonstrate that our techniques

are well-suited to automation by documenting our ShareInfer prototype [Dev]. Our tool is

capable of checking whether a user-defined recursive predicate such as list or tree is uniform

and/or precise and then conducting biabductive inference over a separation logic entailment

containing said predicates.

To check uniformity, the tool first uses heuristics to guess a potential tree share candidate π

and then applies proof rules in Fig. 3.9 and 3.10 to derive the goal uniform(π). To support

more flexibility, our tool also allows users to specify the candidate share π manually. To

check precision, the tool maneuvers over the proof rules in Fig. 3.10 and 3.11 to achieve

the desired goal. In both cases, recursive predicates are handled with the rules in Fig. 3.12.

ShareInfer returns either Yes, No or Unknown together with a human-readable proof of its

claim.

For bi-abduction, ShareInfer automatically checks precision and uniformity whenever it

encounters a new recursive predicate. If the check returns Yes, the tool will unlock the

corresponding rule, i.e., DotPlus for precision and DotStar for uniformity. ShareInfer

then matches fragments between the consequent and antecedent while applying folding

and unfolding rules for recursive predicates to construct the antiframe and inference frame

Chapter 3. Reasoning over disjoint fractional permissions 88

Precision Uniformity Bi-abduction

File name Time (ms) File name Time (ms) File name Time (ms)

precise_map1 0.1 uni_map1 0.2 bi_map1 1.3

precise_map2 0.2 uni_map2 0.8 bi_map2 0.9

precise_map3 1.2 uni_map3 0.3 bi_map3 0.5

precise_list1 2.7 uni_list1 1.2 bi_list1 4.0

precise_list2 1.3 uni_list2 2.1 bi_list2 3.2

precise_list3 3.4 uni_list3 0.7 bi_list3 3.8

precise_tree1 1.4 uni_tree1 1.9 bi_tree1 5.1

precise_tree2 1.7 uni_tree2 1.0 bi_tree2 6.5

precise_tree3 12.2 uni_tree3 10.3 bi_tree3 7.9

Figure 3.18: Evaluation of our proof systems using ShareInfer

respectively. For instance, here is the biabduction problem contained in file bi_tree2 (see

Fig. 3.18):

a
F7−→ (b, c, d) ? L · tree(c) ? R · tree(d) ? [??] ` L · tree(a) ? [??]

ShareInfer returns antiframe L · tree(d) and inference frame a R7−→(b, c, d) ?R · tree(d).

ShareInfer is around 2.5k LOC of Java. We benchmarked it with 27 selective examples from

three categories: precision, uniformity and bi-abduction. The benchmark was conducted

with a 3.4 GHz processor and 16 GB of memory. Our results are given in Fig. 3.18. Despite

the complexity of our proof rules our performance is reasonable: ShareInfer only took 75.9

milliseconds to run the entire example set, or around 2.8 milliseconds per example. Our

benchmark is small, but this performance indicates that more sophisticated separation

logic verifiers such as HIP/SLEEK [CDNQ12] or Infer [CDD+15] may be able to use our

techniques at scale.

Chapter 3. Reasoning over disjoint fractional permissions 89

3.8 Related work and conclusion

Related work. Fractional permissions are essentially used to reason about resource owner-

ship in concurrent programming. The well-known rational model 〈[0, 1],+〉 by Boyland et

al. [Boy03] is used to reason about join-fork programs. This structure has the disjointness

problem which was first noticed by Bornat et al. [BCOP05], as well as other problems

discussed in §3.1, §3.2, and §3.6.1. Boyland [Boy10] extended the framework to scale per-

missions uniformly over arbitrary predicates with multiplication, e.g., he defined π · P as

“multiply each permission π′ in P with π”. However, his framework cannot fit into SL and his

scaling rules are not bi-directional. Jacobs and Piessens [JP11] also used rationals for scaling

permissions π · P in SL but only obtained one direction for DotStar and DotPlus. A

different kind of scaling permission was used by Dinsdale-Young et al. [DYDG+10] in which

they used rationals to define permission assertions [A]rπ to indicate a thread with permission

π can execute the action A over the shared region r.

Protocol-based logics like FCSL [NLWSD14] and Iris [JSS+15] have been very successful in

reasoning about fine-grained concurrent programs, but their high expressivity results in a

heavyweight logic. Automation (e.g. inference such as we do in §3.2) has been hard to come

by. We believe that fractional permissions and protocol-based logics are in a meaningful

sense complementary rather than competitors.

Conclusion. We proposed a modal proof framework in separation logic to reason about

fractional permissions for resource sharing in concurrent programming. Our framework can

support sophisticated verification tasks such as precision reasoning, inductive predicates and

bi-abduction. We also developed scaling separation algebras as compositional models for our

logic. We investigated why our logic cannot support certain desirable properties.

Chapter 4
Complete decision procedures for tree share

constraints

“We all make choices, but in the end,

our choices make us.”

Andrew Ryan, Bioshock (2007).

In this chapter, we will present two decision procedures over tree shares equipped with the join

operator ⊕, namely the satisfiability problem (SAT) and implication problem (IMP). Our

main motivation comes from the fact that verification tools such as HIP/SLEEK [NDQC07]

and VST [App11b] actually use tree shares as permissions in their underlying logic and so

automatic reasoning over tree shares constraints is essential to aid the overall verification

process. To develop the decision procedures over 〈T,⊕〉, we need to establish some theoretical

foundations over the structure. We discovered that tree shares with ⊕ satisfy the small

model property that allows us to restrict the search space to be finite. As a result, our

procedures are complete in the sense that they always return the correct answer for every

SAT and IMP problem. Furthermore, we show that these problems can be equivalently

reduced to Boolean formulas that can be handled by highly-optimized SMT solvers such as

Z3 [dMB08] or MiniSat [ES03].

This chapter is organized as follows∗:

1. In §4.1, we introduce the integration of tree shares into SL and demonstrate how to

∗The materials in this chapter are taken from the paper “Decision Procedures Over Sophisticated Fractional
Permissions” [LGH12], joint work with Cristian Gherghina and Aquinas Hobor. This work was submitted
after my undergraduate study and before my PhD study in NUS.

90

Chapter 4. Complete decision procedures for tree share constraints 91

extract the tree share constraints from SL proof. These constraints are represented by

two query types SAT and IMP over tree shares.

2. In §4.2, we go though tee main components of our decision procedures for SAT and

IMP. Along the way, we also justify their correctness.

3. In §4.3, we explain two key theoretical results that shape the correctness of our

procedures.

4. In §4.4, we report on our experiment and result of the decision procedures in HIP/SLEEK.

5. In §4.5, we draw our conclusion.

Since the proofs of some lemmas are quite technical and tedious, we will explain the intuitions

behind them together with illustrated examples instead. Their correctnesses are verified in

Coq with appropriate pointer to the Coq development files.

4.1 Motivation: share constraints in SL formulas

In §4.1.1, we explain the extraction of share permissions from Separation Logic formulae.

Then in 4.1.2 we define the types of permission constraints that our solver needs to handle.

4.1.1 Shares in HIP/SLEEK and their extraction procedure

Program verification tools, such as HIP, usually do not verify programs on their own. Instead,

a verification tool usually applies Hoare rules to verify program commands and then emits

the associated entailments to separate checkers such as SLEEK. Entailment checkers usually

follow in the footsteps of SMT solvers by dividing the input formulae according to the

background theories, and in turn rely on specialized provers for each theory, e.g. Omega for

Presberger arithmetic.

We plan to follow the same pattern for fractional shares. The program verifier itself needs to

know almost nothing about fractional shares, because it will simply emit entailments over

formulas containing such shares to its entailment checker. The entailment checker needs

to know a bit more: how to separate share information from formulas into a specialized

Chapter 4. Complete decision procedures for tree share constraints 92

domain, i.e., systems of equations over shares. The choice of this domain is an important

modularity boundary because it allows the entailment prover to treat shares as an abstract

type. The entailment checker only knows about certain basic operations such as equality

testing, combining, and splitting shares. To check entailments over shares it calls our backend

share prover (detailed in §4.2).

To demonstrate that the entailment checker can treat the shares abstractly, we will first

outline the extraction of systems of equations over shares from separation logic formulas.

Here we will just write χ for share constants; if our domain were rationals between 0 and

1, then an example χ would be 0.25. The tree share domain is more sophisticated but our

point here is that extracting equations over shares can be done without actually knowing

the underlying share model.

Entailment checkers are complicated, in part because information discovered in one sub-

domain can impact another (e.g., alias analysis can affect share constraints). Due to the

tight link between heap-specific reasoning and share reasoning, extra share constraints are

generated while discharging heap obligations. This information seepage prevents a modular

and compositional description of the share constraint generation process. For brevity, we

will illustrate share constraint extraction from a core separation logic; interested readers

are referred to the description for a richer logic given in [HG12, §8.4]. Extracting share

information from more complex formulas depends on the exact nature of said formulas but

usually follows the pattern we give here in a straightforward way; the end result is just larger

systems of equations.

The logic formulas we will consider here are of the form given in Figure 4.1. Here, v denotes

variables (over shares, locations, and values) and v π7→ v is the fractional points-to predicate.

Obtaining the share equation systems from the entailment Φa ` Φc conceptually requires

three steps.

First, the formulas are normalized in order to ensure that the heap component does not

contain two distinct points-to predicates when the pointers are provably aliased. For example,

give the constraint v1
π17→ v2 ∗ v3

π27→ v4 ∧ β and suppose we also know that β entails the

equality between two addresses v1, v3, i.e., β ` v1 = v2. Then the reduction step is applied

Chapter 4. Complete decision procedures for tree share constraints 93

Φ := ∃v. κ ∧ β | κ ∧ β κ := κ ∗ κ | v π7→ v

β := β ∧ β | v = π | π ⊕ π = π π := v | χ

Figure 4.1: SL formulae with shares

by combining two permissions π1, π2 and forcing the equality between v2 and v4:

v1
π17→ v2 ∗ v3

π27→ v4 ∧ β
β`v1=v3−−−−−→ ∃π3. v1

π37→ v2 ∧ (β ∧ π3 = π1 ⊕ π2 ∧ v2 = v4)

Second, formulas are partitioned based on the domains (e.g., heaps, shares, arithmetics,

bags) and all non heap related expressions are floated out of the heap fragment k. Share

constants are floated out of the points-to relations by introducing a fresh share variable.

Thus v1
χ7→ v2 becomes ∃v′. v1

v′7→ v2 ∧ v′ = χ.

Third, heap-related obligations are discharged and any share constraint generated in the

process is added to the share constraints previously extracted. SLEEK discharges heap

constraints by pairing each points-to predicate pc
sc7→ cc in the consequent with a corresponding

predicate in the antecedent pa
sa7→ ca when pa = pc. This pairing generates extra proof

obligations over both the content of the memory (ca = cc) and the shares. For shares,

SLEEK considers two possibilities: either the owned share sa in the antecedent is equal to

the one in the consequent (sa = sc), or sa is strictly greater (∃sr . sa = sc ⊕ sr). This case

split leads to the generation of two proof obligations, with the original entailment succeeding

if at least one of the two new obligations is satisfied∗.

Furthermore, it is common for separation logic entailment checkers to also infer a frame or

residue—the part of the antecedent not required to prove the consequent. If sa is larger

than sc, then there exists a non-empty share sr such that sr ⊕ sc = sa. This share residue is

captured by the instantiation of sr.

∗We are almost always able to avoid a serious exponential search by using the search prunings described
in [HG12].

Chapter 4. Complete decision procedures for tree share constraints 94

4.1.2 Problems over share equation system

After the heap constraints are discharged, the share relevant portion of the entailment

consists of sets of formulas over positive shares (i.e. not ◦).

Definition 4.1.1 (Share constraint). Our share constraints are the closure of ⊕-equations

and equalities over conjunction ∧ and existential quantifier ∃:

φ
def= ∃v.φ | φ1 ∧ φ2 | π1 ⊕ π2 = π3 | v1 = v2 | v = χ

That is, share formulas φ contain share variables v, existential binders ∃, conjunctions ∧,

join facts ⊕, equalities between variables, and assignments of variables to constants χ. /

Unless bound by an existential, variables are assumed to be universally bound, with universals

bound before existentials (∀∃ rather than ∃∀); despite implementing a translation for the

feature-rich separation logic for SLEEK [HG12] we have not needed arbitrary nesting of

quantifiers. For convenience, we represent the share formulas as equation systems of ⊕-

equations and equalities together with a list of existential variables:

Definition 4.1.2. A tree share equation system Σ is a triple of three lists (l∃, l=, l⊕) in

which:

1. l∃ is the list of existential variables

2. l= is the list of equalities v = w

3. l⊕ is the list of ⊕-equations a⊕ b = c.

For convenience, we will represent a system of equation as Σ = {x1, . . . , xn, e1, . . . , em}

in which xi is existential variable and ei is either ⊕-equation or equality. Furthermore, a

context S of Σ is a (finite) mapping from the variables of Σ into tree shares. We say that S

is a solution of Σ, written S |= Σ, when the mapping makes the equations and equalities in

Σ true. /

Example 4.1.1. The share constraint x⊕ y = • ∧ x =
• ◦

is represented by the share

equation system Σ = {x⊕y = •, x =
• ◦

}. Moreover, the context S = {x =
• ◦

, y =
◦ •

}

Chapter 4. Complete decision procedures for tree share constraints 95

is a solution of Σ. /

Remark. It is worth observing that equality is a special form of equation. Indeed, each

equality v = w is equivalent to the ⊕-equation v ⊕ ◦ = w. Therefore, from the theoretical

viewpoint, one can combine the two lists into a single list of ⊕-equation. However, in practice,

equalities usually outnumber ⊕-equations, plus they are significantly easier to handle and

optimize. As a result, we distinguish the two lists for performance reasons.

To clarify the interaction between entailment checkers and the share solver, we outline

extraction of share equations from two entailments:

x
χ17→ va ∗ x

χ27→ va ` ∃sc. x
sc7→ vc x

χa7→ va ` x
χc7→ vc

First, the two entailments need to be normalized and the shares floated out∗:

x
sa7→ va ∧ χ1 ⊕ χ2=sa ` ∃sc. x

sc7→ vc x
sa7→ va∧sa=χa ` ∃sc. x

sc7→ vc∧sc=χc

Discharging the heap obligations occurs by pairing the x sc7→ vc predicate with x sa7→ va, which

generates the share obligations sa=sc or ∃sr. sa=sc ⊕ sr. These obligations are combined

with the rest of the share constraints, resulting in two share proof obligations for each original

entailment.
χ1⊕χ2=sa ` ∃sc . sa=sc

χ1⊕χ2=sa ` ∃sc, sr. sc⊕sr=sa

sa=χa ` ∃sc . sc=χc ∧ sa=sc

sa=χa ` ∃sc, sr. sc=χc ∧ sa=sc⊕sr

Although simple, the first original entailment often occurs when verifying a method that

requires only read access to a heap location; the existential allows callers to be flexible regard-

ing which specific share of x they have. One technical point is that many separation logics

(including those used in HIP/SLEEK [NDQC07], Heap-Hop [Vil11], and coreStar [BDD+11])

only allow positive (non-empty) fractional shares over a points-to predicate (the empty share

over a points-to is equivalent to ⊥); thus, the above existential must be restricted to never

choose the empty share.

Problem formulation. We have now given two examples of extracting share equations

∗The antecedent ∃ is automatically interpreted as a ∀ over the entailment using renaming when needed
to avoid name clashes.

Chapter 4. Complete decision procedures for tree share constraints 96

from separation logic formulas. Once the translation is finished, a separation logic entailment

checker can ask our share prover two questions:

1. SAT(Σ): Given an equation system Σ, is Σ is satisfiable? That is:

∃S. S |= Σ

SLEEK uses SAT checks to help prune unfeasible proof searches.

2. IMP(Σ1,Σ2): Given two systems Σ1 and Σ2, does Σ1 entail Σ2? That is:

Σ1 ` Σ2 iff ∀S. S |= Σ1 ⇒ S |= Σ2.

Example 4.1.2. Consider two equation systems Σ1 and Σ2 s.t.:

1. Σ1 = {x2, x1 =
• ◦

, x1 ⊕ x2 = •}

2. Σ2 = {x3, x1 ⊕ x3 =
• ◦

}.

Then checking SAT(Σ1) and IMP(Σ1,Σ2) are equivalent to the following queries respec-

tively:

1. ∃x1∃x2. x1 =
• ◦

∧ x1 ⊕ x2 = •

2. ∀x1(∃x2. x1 =
• ◦

∧ x1 ⊕ x2 = • → ∃x3. x1 ⊕ x3 =
• ◦

).

/

In practice this is sufficient; we will detail how we answer these questions in subsequent

sections.

4.2 Decision procedures over tree shares

Here we introduce a decision procedure for discharging tree share proof obligations generated

by program verifiers. Recall from §4.1 that equation systems contain equations of the form

Chapter 4. Complete decision procedures for tree share constraints 97

a⊕ b = c and v = w, plus a list of variables that should be quantified existentially. Moreover,

a solution S of Σ is a finite mapping from the variables of Σ into tree shares. We write

S |= Σ to mean that S is a solution of Σ; and the SAT query is then simply to check whether

∃S.S |= Σ. Furthermore, we write Σ1 ` Σ2 to mean that every solution S that satisfies Σ1

also satisfies Σ2, i.e., ∀S. S |= Σ1 ⇒ S |= Σ2; this is exactly the IMP query.

The key reason SAT and IMP are nontrivial is that the space is dense∗. That is, there

exist trees of arbitrary height, seeming to rule out a brute force search. If we cannot find

a solution to Σ at height 5, how do we know that one is not lurking at height 10,000? If

we check Σ1 ` Σ2 when the variables are restricted to constants of height 5, how do we

know that the entailment will continue to hold when the variables range over constants of

arbitrary height?

Our key theoretical insight is that despite the infinite domain, both SAT and IMP are

decidable by searching in the finite subdomain of trees with bounded height. Define the

system height |Σ| as the height of the highest tree constant in Σ or 0 if Σ contains only

variables†. For solutions S, let |S| be the highest constant in its codomain. In §4.3, we will

prove our key theoretical result: that for both SAT and IMP queries, if the height of the

system(s) of equations is n, then it is sufficient to restrict the search to solutions of height n.

Example 4.2.1. Let Σ = {x = •, x⊕ y =
• ◦

} then Σ is unsatisfiable because substituting

x = • into the second equation will result in • ⊕ y =
• ◦

which is not satisfiable by any

y. Using the key theoretical result, it is sufficient to check for solution of height at most

|Σ| = 1. There are 4 trees of height at most 1, namely {◦, •,
• ◦

,
◦ •

}. As a result, we

need to check for 42 = 16 such (x, y) pairs. /

Of course, we do not want to blindly search through an exponentially large space if we

can avoid it! Our goal is to describe and prove sound the algorithms SAT and IMP for

SAT and IMP given in Algorithms 2 and 3. The core of our decision procedures are the

∗This is by design: density is needed to enable the “Infinite Splitability” axiom, which is needed to
support the verification of divide-and-conquer algorithms.

†Since we are computer scientists, we start counting with 0, so | ◦ | = | • | = 0.

Chapter 4. Complete decision procedures for tree share constraints 98

REDUCE and REDUCEI functions, which use the shape of the tree constants in the system

to guide their search. There are four subroutines: SIMPLIFY, DECOMPOSE, FORMULA,

and SMT_SOLVER. SMT_SOLVER is just a call into an off-the-shelf SAT/SMT solver; our

prototype attaches to both MiniSat [ES03] and Z3 [dMB08]. The other three subroutines

are discussed in detail below and their descriptions are mentioned in Algorithm 1.

4.2.1 Utility functions for SAT and IMP

We will discuss three subroutines SIMPLIFY, DECOMPOSE and FORMULA that are used in

both SAT and IMP. Simply put, SIMPLIFY simplifies an equation system using heuristics. In

practice, many tree share constraints extracted from HIP/SLEEK can usually be simplified

further, e.g., x ⊕ ◦ = y is equivalent to x = y. Thus the main purpose of SIMPLIFY is to

reduce the size of the equation system so that the overall performance can be improved.

The second subroutine is DECOMPOSE that splits an equation system Σ into a pair of

left-subsystem Σl and right-subsystem Σr. The splitting mechanism is generalized from

the Split function in §2.2.2 that splits a tree τ into its left and right subtree. Here we can

also split a variable x into two fresh variables xl and xr, or equality/equation in which

the splitting is done argument-wise. Last but not least, FORMULA transforms an equation

system of height zero into an equivalent Boolean formula that can be handled by external

SMT solvers.

♣ SIMPLIFY (Algorithm 1). SAT/SMT solvers can require a lot of computation time.

Accordingly, SIMPLIFY attempts reduce the size of the problem with a combination of

several techniques. First, each equation that contains two or three tree constants is simplified

into an equality (or >/⊥). To do so, SIMPLIFY sometimes uses the inverse operation of ⊕,

written 	, and which satisfies a⊕ b = c iff c	 a = b. To calculate the (partial) operation

a	 b, unfold a and b to the same shape (just as with ⊕); calculate the difference leafwise

using the rules • 	 • = ◦, • 	 ◦ = •, and ◦ 	 ◦ = ◦; and then fold the result back into

Chapter 4. Complete decision procedures for tree share constraints 99

Algorithm 1 Common utility functions for SAT and IMP
1: function SIMPLIFY(Σ)
Ensure: Simplify Σ using a list of heuristics
2: for each equation e def= x⊕ y = z contains at least two constants, or ◦, or • do
3: Simplify e into e′ using a list of heuristics
4: if e′ is a contradiction then
5: return ⊥
6: else if e is an equality(or two equalities) of the form x = t then
7: Substitute x with t into Σ
8: end if
9: end for

10: end function
11:
12: function DECOMPOSE(Σ)
Ensure: Return a subsystem pair (Σl,Σr) of Σ using Split from §2.2.2
13: let Σl,Σr be two empty equation systems
14: for each existential variable x in Σ do
15: let (xl, xr)← Split(x)
16: Add xl to Σl

17: Add xr to Σr

18: end for
19: for each equation x1 ⊕ x2 = x3 do
20: (xli, xri)← Split(xi)
21: Add xl1 ⊕ xl2 = xl3 to Σl

22: Add xr1 ⊕ xr2 = xr3 to Σr

23: end for
24: for each equality x1 = x2 do
25: let (xli, xri)← Split(xi)
26: Add xl1 = xl2 to Σl

27: Add xr1 = xr2 to Σr

28: end for
29: return (Σl,Σr)
30: end function
31:
32: function FORMULA(Σ)
Require: Σ is an equation system of height 0
Ensure: Transform Σ into an equivalent Boolean formula
33: for each equality x1 = x2 do
34: Ψ← (x1 ∧ x2) ∨ (¬x1 ∧ ¬x2)
35: Φ← Φ ∧ Ψ
36: end for
37: for each equation x1 ⊕ x2 = x3 do
38: Ψ← (x1 ∧ ¬x2 ∧ x3) ∨ (¬x1 ∧ x2 ∧ x3) ∨ (¬x1 ∧ ¬x2 ∧ ¬x3)
39: Φ← Φ ∧ Ψ
40: end for
41: Φ← ∃x1 . . . ∃xn. Φ for each existential variable xi in Σ
42: return Φ
43: end function

Chapter 4. Complete decision procedures for tree share constraints 100

canonical form, e.g.:

• ◦ ◦ ◦ •

	
• ◦ ◦

∼=

• ◦ ◦ ◦ •

	

• ◦ ◦ ◦ ◦

=

◦ ◦ ◦ ◦ •

∼=
◦ ◦ ◦ •

	 is needed when one of the constants appears on the RHS of an equation, e.g.,∗

• ◦ ◦
⊕ a =

• ◦ ◦ ◦ •

 a =
◦ ◦ ◦ •

If an equation reaches a tautology (e.g., ◦ ⊕ v = v) then it is removed; if an equation

reaches a contradiction (e.g., • ⊕ • = v) then we mark the entire system as equivalent to ⊥.

Second, SIMPLIFY will rewrite equalities; e.g., if the equality v = χ is in the system then

SIMPLIFY will substitute χ for v in the remainder of the system. Third, SIMPLIFY uses

certain domain-specific knowledge to simplify equations with zero or one tree constant(s),

including the following examples:

v1 ⊕ v2 = ◦ v1 = ◦ ∧ v2 = ◦ v1 ⊕ ◦ = v2 v1 = v2

v1 ⊕ • = v2 v1 = ◦ ∧ v2 = • v1 ⊕ v2 = v1 v2 = ◦

v1 ⊕ v1 = v2 v1 = ◦ ∧ v2 = ◦

The result of SIMPLIFY is a new (in practice considerably smaller!) system of equations Σ′

that has the same solutions, as expressed by the following Lemma:

Lemma 4.2.1 ([Sol]). For all solutions S, S |= Σ iff S |= SIMPLIFY(Σ). /

Proof intuition. Intuitively, heuristics in SIMPLIFY are equivalent transformations and thus

preserve the satisfiability property of the equation system.

We will also need to know that SIMPLIFY does not increase the height of an equation system.

∗In §4.2 we use the symbol to indicate a transformation taken by the subroutine currently under
discussion, so here it is referring to one of the operations of SIMPLIFY.

Chapter 4. Complete decision procedures for tree share constraints 101

To prove this, we need the following fact about ⊕ and 	:

Lemma 4.2.2 ([Sol]). If a⊕ b = c or a	 b = c then |c| ≤ max (|a|, |b|). /

Proof intuition. Informally speaking, although trees can be unfolded from canonical form

temporarily, they are never unfolded beyond the height of the highest tree and thus the

height of the result tree is also bounded above by that value.

Consequently, it is straightforward to prove the associated fact on SIMPLIFY:

Lemma 4.2.3 ([Sol]). |SIMPLIFY(Σ)| ≤ |Σ|. /

Proper equation systems. An equation system Σ is proper when all of the equations

and equalities in Σ have no more than one constant. SIMPLIFY(Σ) is always proper, which

simplifies some of our upcoming soundness proofs; accordingly, hereafter we assume that

all of our equation systems are proper.

♣ DECOMPOSE (Algorithm 1). The heart of our decision procedure is DECOMPOSE, which

takes an equation system Σ of height n and produces two independent systems Σl and Σr

with heights at most n− 1. We decompose equalities and equations as follows:

v (vl, vr) vars

◦ (◦, ◦) • (•, •)
τ1 τ2

 (τ1, τ2) consts

a (al, ar)

b (bl, br)

c (cl, cr)

a⊕ b = c (al ⊕ bl = cl, ar ⊕ br = cr)

a = b (al = bl, ar = br)

eqs

In addition, DECOMPOSE also transforms the list of existentially bound variables so that if

v was existentially bound in Σ then vl is existentially bound in Σl and vr is existentially

bound in Σr. Fresh variable names are chosen so that the system can determine which

“parent” variables are associated with which “child” variables. We write x̂ for the parent

variable function, e.g., v̂l = v̂r = v.

Chapter 4. Complete decision procedures for tree share constraints 102

The key fact about DECOMPOSE is that the solution of the original system is tightly related

to the solutions of the decomposed systems, as follows:

Lemma 4.2.4 ([Sol]). Given a system Σ and a solution S such that DECOMPOSE(Σ) =

(Σl,Σr) and DECOMPOSE(S) = (Sl, Sr), then S |= Σ iff Sl |= Σl and Sr |= Σr. /

By DECOMPOSE(S) we mean the division of the solution S into two independent solutions:

DECOMPOSE(S) ≡ (λv.DECOMPOSE(S(v̂)).1, λv.DECOMPOSE(S(v̂)).2)

Lemma 4.2.4 holds because the left and right subtrees of a binary tree are independent from

each other. Moreover, DECOMPOSE decreases height:

Lemma 4.2.5 ([Sol]). If DECOMPOSE(Σ) = (Σl,Σr), then |Σ| > max (|Σl|, |Σr|) or we

were at height 0 to begin with, i.e., |Σ| = |Σl| = |Σr| = 0. /

Proof intuition. Direct from the fact that Split decreases tree height (Lemma 2.2.1).

♣ FORMULA (Algorithm 1). After repeatedly applying DECOMPOSE, |Σ| = 0, i.e., the

embedded constants are only ◦ and •. Tree constants at height zero have a natural interpre-

tation as booleans, with ◦ as ⊥ and • as >. Likewise, solutions at height zero can be used

as valuations (maps from variables to > and ⊥) for logic formulas. Accordingly, FORMULA

translates the equations and equalities in a system of equations of height zero into logic

formulas as follows:

a⊕ b = c (¬a ∧ ¬b ∧ ¬c) ∨ (¬a ∧ b ∧ c) ∨ (a ∧ ¬b ∧ c)

a = b (¬a ∧ ¬b) ∨ (a ∧ b)

Furthermore, if some of the arguments in the equation are constant then the Boolean formula

is further simplified, e.g.. a ⊕ b = • (a ∧ ¬b) ∨ (¬a ∧ b). Each resulting formula is

∧-conjoined together to get a single formula that represents the entire system, as indicated

by the following lemma:

Lemma 4.2.6 ([Sol]). Let |S| = |Σ| = 0 and v1, . . . , vn be the existentially bound variables

in Σ. Then S |= Σ iff S |= ∃v1 . . . ∃vn. FORMULA(Σ). /

Chapter 4. Complete decision procedures for tree share constraints 103

To connect to a pure SAT solver (e.g., MiniSat) we then compile the existential into a

disjunction; e.g., ∃v. φ (v=>∧ φ) ∨ (v=⊥∧ φ). In contrast, SMT solvers such as Z3 can

handle existentials over booleans directly.

The proof of Lemma 4.2.6 is by simple case analysis, but critics will rightly observe that the

hypothesis |S| = 0, which is crucial to make the case analysis finite, is in general not true.

We will see below how to overcome this difficulty.

4.2.2 Overview of SAT procedure

Algorithm 2 Decision procedure SAT for SAT problem
1: function REDUCE(Σ)
Ensure: Return a Boolean formula that is equivalent to the input equation system
2: Σ′ ← SIMPLIFY(Σ)
3: if |Σ′| = 0 then
4: return FORMULA(Σ′)
5: else
6: (Σl,Σr)← DECOMPOSE(Σ′)
7: Φ← REDUCE(Σl) ∧ REDUCE(Σr)
8: return Φ
9: end if
10: end function
11:
12: function SAT(Σ)
Ensure: Return true iff Σ is satisfiable
13: Φ← REDUCE(Σ)
14: return SMT_SOLVER(Φ)
15: end function

The procedure SAT is described in Algorithm 2. The heart of SAT is the function REDUCE

that utilizes all subroutines from the previous subsection. The last puzzle piece for the

correctness of SAT is one of the two major theoretical insights of this chapter:

Theorem 4.2.1 ([Sol]). Σ is satisfiable if and only if Σ can be satisfied with a solution S

whose height is at most |Σ|, i.e.:

∃S. S |= Σ iff ∃S. |S| ≤ |Σ| ∧ S |= Σ.

/

Example 4.2.2. Let Σ = {x ⊕ y = •} then |Σ| = 0. One can check that Σ has infinitely

Chapter 4. Complete decision procedures for tree share constraints 104

many solutions of large height, e.g.,

• ◦ ◦ •

⊕

◦ • • ◦

= •. Yet there exist solutions

of height 0, e.g., ◦ ⊕ • = •. /

We will defer the proof of Theorem 4.2.1 until §4.3.1; our task in this section is to show how

it fits into our correctness proof for SAT, i.e.,

Theorem 4.2.2 ([Sol]). SAT(Σ) = > iff Σ is satisfiable, i.e., ∃S. S |= Σ. /

Proof. Given Σ, we call REDUCE and feed the result into the SMT solver, so Theorem 4.2.2

depends on REDUCE turning Σ into an equivalent logical formula.

The proof of REDUCE is by (complete) induction on |Σ|. Both the base case and the inductive

case begin by applying applying SIMPLIFY to reach Σ′. By Lemma 4.2.1, Σ′ is satisfiable iff

Σ was satisfiable; moreover, by Lemma 4.2.3, |Σ′| ≤ |Σ|. After simplification, the base case

and the inductive case proceed differently.

In the base case, |Σ′| = 0 and REDUCE calls FORMULA to produce a logical formula that

by Lemma 4.2.6 is equivalent to Σ′ as long as the solution has height 0. Theorem 4.2.1

completes the base case by telling us that testing satisfiability at height 0 is sufficient to

determine satisfiability in general.

In the inductive case, we apply DECOMPOSE over Σ′ to yield Σl and Σr. Lemma 4.2.5 tells

us that both new systems have lower height, so we can apply the induction hypothesis to

verify the recursive call and get two new formulae whose truth are equivalent to Σl and Σr.

Lemma 4.2.4 completes the inductive step by telling us that the conjunction of Σl and Σr is

equivalent to Σ′.

Example 4.2.3. Let Σ = {x⊕ y =
• ◦

, x⊕ y = z, z ⊕ ◦ = •}. When calling REDUCE(Σ),

the subroutine SIMPLIFY(Σ) in line 2 reduces the third equation z ⊕ ◦ = • into z = • and

substitutes the value of z into the remaining equations. Thus Σ′ = {x⊕ y =
• ◦

, x⊕ y = •}.

As |Σ′| = 1 > 0, DECOMPOSE(Σ′) is called in line 6 which returns the pair of left and right

subsystem of Σ′:

1. Σl = {xl ⊕ yl = •, xl ⊕ yl = •} and

Chapter 4. Complete decision procedures for tree share constraints 105

2. Σr = {xr ⊕ yr = ◦, xr ⊕ yr = •}

The two recursive calls in line 7 return two the equivalent Boolean formulas:

1. REDUCE(Σl) = Ψ ∧ Ψ where Ψ = (xl ∧ ¬yl) ∨ (¬xl ∧ yl)

2. REDUCE(Σr) = ⊥ because xr ⊕ yr xr = ◦ ∧ yr = ◦ and their substitutions into

the second equation yields ◦ ⊕ ◦ = • which is a contradiction.

As a result, REDUCE(Σ) returns the Boolean formula Ψ ∧ Ψ ∧ ⊥ which is not satisfiable

when solved by SMT solver. /

4.2.3 Overview of IMP procedure

Algorithm 3 Decision procedure IMP for IMP problem
1: function REDUCEI(Σ1,Σ2)
Ensure: Return a pair of Boolean formulas that are equivalent to the input equation systems
2: Σ′1 ← SIMPLIFY(Σ1)
3: Σ′2 ← SIMPLIFY(Σ2)
4: if (|Σ′1| = 0 AND |Σ′2| = 0) then
5: return (FORMULA(Σ′1),FORMULA(Σ′2))
6: else
7: (Σl

1,Σr
1)← DECOMPOSE(Σ′1)

8: (Σl
2,Σr

2)← DECOMPOSE(Σ′2)
9: (Φl

1,Φl
2)← REDUCEI(Σl

1,Σl
2)

10: (Φr
1,Φr

2)← REDUCEI(Σr
1,Σr

2)
11: return (Φl

1 ∧ Φr
1,Φl

2 ∧ Φr
2)

12: end if
13: end function
14:
15: function IMP(Σ1,Σ2)
Ensure: Return true iff Σ1 ` Σ2
16: (Φ1,Φ2)← REDUCEI(Σ1,Σ2)
17: return NOT SMT_SOLVER(Φ1 ∧ ¬Φ2)
18: end function

The implementation for IMP is elaborated in Algorithm 3, which is similar to SAT. We need

the second major theoretical insight of this chapter to verify IMP.

Theorem 4.2.3 ([Sol]). Σ1 ` Σ2 iff Σ1 ` Σ2 for all solutions S s.t. |S| ≤ max (|Σ1|, |Σ2|),

i.e.:

∀S. S |= Σ1 → S |= Σ2 iff ∀S. |S| ≤ max (|Σ1|, |Σ2|)→ S |= Σ1 → S |= Σ2.

Chapter 4. Complete decision procedures for tree share constraints 106

/

We will defer the proof until §4.3.2; just as we did with Theorem 4.2.1 above, our task here

is to show how Theorem 4.2.3 fits into our correctness proof for IMPL, i.e.,

Theorem 4.2.4 ([Sol]). IMPL(Σ1,Σ2) iff Σ1 ` Σ2, i.e., ∀S. S |=Σ1 → S |=Σ2. /

Proof. The major effort is proving that REDUCEI correctly transforms Σ1 and Σ2 into

equivalent logical formulae Φ1 and Φ2 such that Σ1 ` Σ2 iff Φ1 → Φ2; afterwards we simply

use the standard SAT/SMT solver trick of converting a validity check for Φ1 → Φ2 into an

unsatisfiability check for Φ1 ∧ ¬Φ2.

The proof of REDUCEI is largely in parallel with the proof of REDUCE in Theorem 4.2.2.

We proceed by complete induction, this time on max (|Σ1|, |Σ2|). Again the base and

inductive cases begin in the same way. We apply SIMPLIFY to reach Σ′1 and Σ′2 and

again use Lemma 4.2.1 to guarantee that Σ′1 ` Σ′2 iff Σ1 ` Σ2; Lemma 4.2.3 ensures that

max (|Σ′1|, |Σ′2|) ≤ max (|Σ1|, |Σ2|).

After simplification, the base and inductive cases diverge. In the base case, max (|Σ′1|, |Σ′2|) =

0 and we call FORMULA to reach two logical formulae, the first equivalent to Σ′1 and the

second equivalent to Σ′2, as long as the solutions are of height zero (Lemma 4.2.6). Theorem

4.2.3 completes the base case by observing that it is sufficient to check only the solutions of

height |Σ′1|, i.e. zero.

In the inductive case, we apply DECOMPOSE over Σ′1 and Σ′2 to decrease the maximum of

their heights (Lemma 4.2.5), and thus letting us use the induction hypothesis for the recursive

calls. Afterwards, we have four formulae (Φl
1, etc.); we then conjoin both antecedents and

both consequents using Lemma 4.2.4.

Example 4.2.4. Let Σ1 = {x⊕ y = •, x =
• ◦

} and Σ2 = {y =
◦ •

}. Suppose we want

to check whether Σ1 ` Σ2 (which it is) using IMP. Both systems are already simplified so

REDUCEI(Σ1,Σ2) calls the subroutine DECOMPOSE in line 7 and 8. As a result, we have 4

subsystems:

1. Σl
1 = {xl ⊕ yl = •, xl = •}

Chapter 4. Complete decision procedures for tree share constraints 107

2. Σr
1 = {xr ⊕ yr = •, xr = ◦}

3. Σl
2 = {yl = ◦}

4. Σr
2 = {yr = •}

Using FORMULA, we compute their corresponding Boolean formulas:

1. Φl
1 = [(xl ∧ ¬yl) ∨ (¬xl ∧ yl)] ∧ xl

2. Φr
1 = [(xl ∧ ¬yl) ∨ (¬xl ∧ yl)] ∧ ¬xl

3. Φl
2 = ¬yl

4. Φr
2 = yr

Finally, we use SMT solver to check satisfiability of the formula (Φl
1 ∧ Φr

1) ∧ ¬(Φl
2 ∧ Φr

2)

which returns False. Hence the entailment Σ1 ` Σ2 is valid. /

4.2.4 Optimizations

The algorithms presented in Algorithms 2 and 3 get the job done but yield far from

optimal performance. Our prototype incorporates a number of additional optimizations

including optimizations during SAT that drop equalities after substitution and a lazier on-

demand version of DECOMPOSE. In addition to utilizing the lazier version of DECOMPOSE,

optimizations during IMP include dropping existentials from the antecedent, substituting

equalities from the antecedent into the consequent, and stopping decomposition when the

antecedent has reached height zero and performing a SAT check on the antecedent if the

consequent has not also reached height zero. Several optimizations require some additional

theoretical insight; e.g., the last requires the following:

Lemma 4.2.7. Let S be a solution of Σ. Then |S| ≥ |Σ|. /

Proof. Recall that we assume that Σ is proper, i.e., each equation has at most one constant.

If |Σ| = 0, we are done. Otherwise, by definition of |Σ| = n, there must be an equation σ

containing a constant χ with height n. Since S |= Σ we know that S |= σ. Assume both

variables v1 and v2 ∈ σ have height lower than n in S (i.e., max (|S(v1)|, |S(v2)|) < |χ|).

Chapter 4. Complete decision procedures for tree share constraints 108

By Lemma 4.2.2 we also know that |χ| ≤ max (|S(v1)|, |S(v2)|), so by transitivity we have

|χ| < |χ|, a contradiction. Accordingly, at least one of the variables vi must have had height

at least n.

Unsurprisingly, the actual code used in the prototype is much more complicated than the

algorithms presented above, and accordingly is much harder to verify. As a result, we will

develop a verified implementation in the next chapter.

4.3 Sufficiency of finite search over tree shares

The SAT and IMP algorithms presented in §4.2.2 and §4.2.3 are basically doing a shape-

guided search through a finite domain. Our key theoretical insight is that a finite search

is sufficient, as formalized in the statement of Theorems 4.2.1 and 4.2.3 in §4.2. Our next

task is to prove these theorems, which is the focus of the remainder of this section. The

most technical parts—Lemmas 4.3.1 and 4.3.3—have been mechanically verified in Coq. The

remaining proofs have been carefully checked on paper.

4.3.1 The sufficiency of finite search for SAT

We begin by explaining two related operations given a tree τ and natural n: left rounding,

written b←−τ cn; and right rounding, written b−→τ cn. Because of the canonical form for tree

shares, their associated formal definitions are somewhat unpleasant, but informally what is

going on is simple. First, the tree τ is unfolded to height n. Second, we shrink the height of

the tree by uniformly choosing the left (respectively, right) leaf from each pair of leaves at

height n. Finally, we refold the resulting tree back into canonical form. For convenience,

the subscript n is called the rounding level.

For illustration, here we left and right round the tree
• ◦ • ◦ •

to height 3. To help visually

track what is going on, we have highlighted the left leaf in each pair with the color red and

Chapter 4. Complete decision procedures for tree share constraints 109

the right leaf in each pair with the color blue.

←−−−−−−−−−−−−

• ◦ • ◦ •

3

∼=

←−−−−−−−−−−−−−−−−−−−−

• • ◦ ◦ • ◦ • •

3

=

• ◦ • •

∼=
• ◦ •

−−−−−−−−−−−−→

• ◦ • ◦ •

3

∼=

−−−−−−−−−−−−−−−−−−−−→

• • ◦ ◦ • ◦ • •

3

=

• ◦ ◦ •

∼=

• ◦ ◦ •

Lemma 4.3.1 (Properties of rounding functions [Sol]). Let τ, τl, τr, τ1, τ2, τ3 be tree shares

and n ∈ N the rounding level then:

1. For any rounding level greater than the tree height, the two rounding functions are

the identity function, i.e.:

if n > |τ | then b←−τ cn = b−→τ cn = τ

2. If the rounding level is the tree height then the two rounding functions yield trees with

smaller height, i.e.:

if n = |τ | and τl = b←−τ cn and τr = b−→τ cn then max (|τl|, |τr|) < n

3. The rounding functions preserve the join relation, i.e.:

if τ1 ⊕ τ2 = τ3 then b←−τ1 cn ⊕ b
←−τ2 cn = b←−τ3 cn and b−→τ1 cn ⊕ b

−→τ2 cn = b−→τ3 cn

where n ≥ max (|τ1|, |τ2|, |τ3|).

/

Proof intuition. Lemma 4.3.1 states (1) that b←−τ cn and b−→τ cn do not affect τ if n > |τ |; and

Chapter 4. Complete decision procedures for tree share constraints 110

(2) will decrease the height if n = |t|. Most importantly, (3) b←−τ cn and b−→τ cn preserve the

join relation when n is big enough.

We override
⌊←−· ⌋n and

⌊−→· ⌋n to work over solutions S point-wise as follows:

b
←−
S cn ≡ λv. b

←−−−
S(v) cn b

−→
S cn ≡ λv. b

−−−→
S(v) cn

The key point of the rounding functions is given by the next lemma, a corollary of Lemma

4.3.1 after using a solution S to instantiate variables in a system Σ.

Lemma 4.3.2 ([Sol]). Let Σ be a equation system and S is its solution of height n. Suppose

n > |Σ| and let Sl = b←−S cn, Sr = b−→S cn be two rounding contexts of level n computed from

S. Then both Sl and Sr are solutions of Σ and their heights are both smaller than n. /

Proof intuition. The key to this lemma is that since we are rounding only at a height n > |Σ|,

all of the constants in Σ are unchanged. Only the variables in S with height greater than

|Σ| are modified, but their new values are also solutions for Σ.

With the preliminaries out of the way, we are finally ready to prove Theorem 4.2.1.

Theorem 4.2.1 ([Sol]). Σ is satisfiable if and only if Σ can be satisfied with a solution S

whose height is at most |Σ|, i.e.:

∃S. S |= Σ iff ∃S. |S| ≤ |Σ| ∧ S |= Σ.

Proof. ⇐: Immediate. For ⇒ direction: Suppose S is a solution of Σ. If |S| ≤ |Σ| then

we are done, otherwise |S| = |Σ|+ n for some n. We proceed by strong induction on n. If

n = 0 we are done. Otherwise, by Lemma 4.3.2 we know that Sl = b←−S c|Σ|+n satisfies Σ

and |Sl| < |S|, letting us apply the induction hypothesis.

4.3.2 The sufficiency of finite search for IMP

The entailment problem IMP is more complicated than SAT due to the contravariance.

Suppose we have computationally checked that all solutions S of height at most |Σ1| that

Chapter 4. Complete decision procedures for tree share constraints 111

satisfy Σ1 also satisfy Σ2. Now suppose that S |= Σ1 for some S such that |S| = |Σ1|+ 1,

and we wish to know if S |= Σ2. Lemma 4.3.2 tells us that b←−S c|Σ1|+1 |= Σ1. Our

computational verification then tells us that b←−S c|Σ1|+1 |= Σ2, but then we are stuck: on its

own, b←−S c|Σ1|+1 |= Σ2 is too weak to prove S |= Σ2.

The root of the problem is that b←−τ cn does not contain enough information about the original

because half of the leaves are removed. Fortunately, the leaves that were dropped when we

round left are exactly the leaves that are kept when we round right, and vice versa. We

can define a third operation, written τl 5n τr and pronounced “average”, that recombines

the rounded trees back into the original. Just as was the case with the rounding functions,

although the formal definition of τl 5n τr is somewhat unpleasant due to the necessity of

managing the canonical forms, the core idea is straightforward. First, τl and τr are unfolded

to height n− 1. Second, each leaf in τl is paired with its corresponding leaf in τr. Finally,

the resulting tree is folded back into canonical form. For convenience, we call subscript n

the averaging level.

We illustrate with another example, highlighting again with red and blue:

• ◦ •
53

• ◦ ◦ •

∼=

• ◦ • •

53

• ◦ ◦ •

=

• • ◦ ◦ • ◦ • •

∼=

• ◦ • ◦ •

Lemma 4.3.3 (Properties of averaging function [Sol]). Let τ, τi, τ ′i be tree shares and n ∈ N

the averaging level then:

1. If the averaging level is greater than the tree height then averaging a tree with itself

results in the same tree, i.e.:

if n > |τ | then τ 5n τ = τ

2. Averaging the left and right rounding tree of the same tree with the same rounding

level and same averaging level results in the original tree, i.e.:

if n ≥ |τ | then b←−τ cn 5n b−→τ cn = τ

Chapter 4. Complete decision procedures for tree share constraints 112

3. The averaging function preserves the join relation, i.e.:

if τ1 ⊕ τ2 = τ3 and τ ′1 ⊕ τ ′2 = τ ′3 then (τ1 5n τ
′
1)⊕ (τ2 5n τ

′
2) = (τ3 5n τ

′
3).

where n > max (|τ1|, |τ2|, |τ3|, |τ ′1|, |τ ′2|, |τ ′3|).

/

Proof intuition. The key points are (1) τ is an identity with itself, (2) 5n is the inverse of

b←−τ cn and b−→τ cn, and (3) 5n preserves the join operation ⊕ if n is big enough.

Given a system Σ, Lemma 4.3.3 contains the facts we need to prove that the averaging

context of two solutions Sl and Sr as defined below is also a solution.

Sl 5n Sr ≡ λv. Sl(v) 5n Sr(v)

Lemma 4.3.4 (Properties of averaging context [Sol]). Let Σ be an equation system, n ∈ N

the averaging level and S, Sl, Sr its contexts then:

1. Averaging the left and right rounding contexts at the same level results in the original

context, i.e.:

if n ≥ |S| then b
←−
S cn 5n b

−→
S cn = S

2. The averaging context of two solutions is also a solution, i.e.:

if Sl, Sr are solutions of Σ then Sl 5n Sr is also a solution of Σ

where n > max (|Sl|, |Sr|).

/

Proof intuition. These properties are generalized from Lemma 4.3.3.

We are now ready to attack the main theorem for IMP. Basically, we prove that IMP

satisfies the small model property and thus IMP(Σ1,Σ2) can be restricted to solutions whose

Chapter 4. Complete decision procedures for tree share constraints 113

height is up to the height of the whole system.

Theorem 4.3.1 ([Sol]). Σ1 ` Σ2 iff Σ1 ` Σ2 for all solutions S s.t. |S| ≤ max (|Σ1|, |Σ2|),

i.e.:

∀S. S |= Σ1 → S |= Σ2 iff ∀S. |S| ≤ max (|Σ1|, |Σ2|)→ S |= Σ1 → S |= Σ2.

/

Proof. ⇒: Immediate. ⇐: We apply complete induction, starting from n = max (|Σ1|, |Σ2|),

on the height of solutions S of Σ1. The base case (|S| = n) is immediate. For the inductive

case, we know S |= Σ1 and that all solutions S′ of Σ1 such that |S′| < |S| are also solutions of

Σ2. By Lemma 4.3.2, we know that b←−S c|S| and b
−→
S c|S| are both solutions to Σ1 with lower

heights. The induction hypothesis yields that b←−S c|S| and b
−→
S c|S| are also both solutions of

Σ2. Lemma 4.3.4 completes the proof by telling us that b←−S c|S| 5|S| b
−→
S c|S| = S is also a

solution of Σ2.

4.4 Experiment evaluation

Here we discuss some implementation issues. Our prototype is an OCaml library that

implements (an optimized version of) the algorithms from §4.2 to resolve the SAT and IMP

queries issued by an entailment checker such as SLEEK.

Architecture. Our library contains four modules with clearly delimited interfaces so that

each component can be independently used and improved:

1. An implementation of tree shares that exposes basic operations like equality testing,

tree constructors, the join operation, and left/right projection.

2. The core: which reduces equation systems to boolean satisfiability. The bulk of the

core module translates equation systems into boolean formulas via an optimized version

of the procedures given in §4.2. As we will see, a considerable number of queries reduce

to tautologies after repeated simplification/decomposition and can thus be discharged

Chapter 4. Complete decision procedures for tree share constraints 114

without the SAT/SMT solver. If we are not that lucky, then the system is reduced

to a list of existentially quantified variables, a list of variables that must be strictly

positive, and a list of join facts over booleans of the form v1 ⊕ v2 = (•|v3).

3. The backend: tasked with interfacing with the SAT/SMT solver: translating the

output format from the core to the input format of the SAT/SMT solver and retrieving

the result. Our backend is quite lightweight so changing the underlying solver is a

breeze. We provide backends to MiniSat [ES03] and Z3 [dMB08]; each add some final

solver-specific optimizations.

4. A frontend: although the prover can be used as an OCaml library, we believe users

may also want to query it as a standalone program. We provide a module for parsing

input files and calling the core module.

Evaluation A: SLEEK embedding. Our OCaml library is designed to be easily incor-

porated into a general verification system. Accordingly, we tested our implementation by

incorporating it into the SLEEK separation logic entailment prover and comparing its per-

formance with our previous attempt at a share prover [HG12, §8.1]. That prover attempted

to find solution by iteratively bounding the range of variables and trying to reach a fixed

point; for example from
◦ •

⊕ x = y it would deduce ◦ ≤ x v
• ◦

and
◦ •

v y where

a v b
def= a t b = b. The resulting incomplete solver was unable to prove most entailments

containing more than one share variable, even for many extremely simple examples such as

v1 ⊕ v2 = v3 ` v2 ⊕ v1 = v3.

We denote the implementation of the method presented here as ShP (Share Prover), and

use BndP (Bound Prover) for the previous prover and present our results in Table 4.1. In

the first column, we name our tests, which are broken into three test groups. The next five

columns deal with the SAT queries generated by the tests, and the final five columns with

the IMP queries.

The first two test groups were developed for BndP in [HG12] and so the share problems

they generate are not particularly difficult. The first four tests verify increasingly precise

Chapter 4. Complete decision procedures for tree share constraints 115

properties of a short (32-line) concurrent program in HIP, which calls SLEEK, which then

calls BndP/ShP. In either case, the number of calls is the same and is given in the column

labeled “call no.”; e.g., barrier-weak requires 116 SAT checks and 222 IMP checks.

The columns labeled “BndP (ms)” contain the cumulative time in milliseconds to run the

BndP checker on all the queries in the associated test, e.g., barrier-weak spends 0.4ms

to verify 116 SAT problems and 2.1ms to verify 222 IMP checks. BndP may be highly

incomplete, but at least it is rapidly highly incomplete. The columns labeled “ShP” contain

the cumulative time in milliseconds to run the ShP checker, e.g., barrier-weak spends 610ms

verifying 116 SAT problems and 650ms verifying 222 IMP problems. Obviously this is

quite a bit slower, but part of the context is that the rest of HIP/SLEEK is approximately

3,000ms on each of the first four tests—in other words, ShP, although much slower than

BndP, is still considerably faster than the rest of HIP/SLEEK.

The remaining columns shed some light on what is going on; “SAT no.” gives the number

of queries that ShP actually submitted to the underlying SAT solver. For example, barrier-

weak submitted 73 out of 116 queries to the underlying solver for SAT and 42 out of 222

queries to the underlying solver for IMP; the remaining 43+180 queries were solved during

simplification/decomposition. Finally “SAT (ms)” gives the total amount of time spent in the

underlying SAT solver itself; in every case this is the dominant timing factor. While it is not

surprising that the SAT solver takes a certain amount of time to work its mojo, we suspect

that most of the time is actually spent with process startup/teardown and hypothesize that

performance would improve considerably with some clever systems engineering. Of course,

another way to improve the timings in practice is to run BndP first and only resort to ShP

when BndP gets confused.

Tests five through nine were also developed for BndP, but bypass HIP to test certain parts

of SLEEK directly. Observe that when the underlying solver is not called, ShP is quite fast,

although still considerably slower than BndP.

On the other hand, even if the total time is reasonable, what is the point of advocating

a slower prover unless it can verify things the faster prover cannot? The tenth test tries

to verify a simple 25-line sequential program whose verification uses fractional shares; we

Chapter 4. Complete decision procedures for tree share constraints 116

SAT IMP

test call BndP ShP SAT SAT call BndP ShP SAT SAT

no. (ms) (ms) no. (ms) no. (ms) (ms) no. (ms)

barrier-weak 116 0.4 610 73 530 222 2.1 650 42 450

barrier-strong 116 0.6 660 73 510 222 2.2 788 42 460

barrier-paper 116 0.7 664 73 510 216 2.2 757 42 460

barrier-paper-ex 114 0.8 605 71 520 212 2.3 610 40 430

fractions 63 0.1 0.1 0 0 89 0.1 110 11 110

fractions1 11 0.1 0.1 0 0 15 0.1 31.3 3 30

barrier 68 0.1 0.9 0 0 174 1.2 3.9 0 0

barrier3 36 0.2 0.1 0 0 92 0.2 2.2 0 0

barrier4 59 0.1 0.7 0 0 140 0.9 2.4 0 0

read_ops 14 FAIL 210 14 208 27 FAIL 317 9 150

construct 4 FAIL 70 4 65 17 FAIL 880 17 270

join_ent 3 FAIL 70 3 30 3 FAIL 50 3 48

Table 4.1: Experimental timing results

write FAIL to indicate that BndP is unable to verify the queries. Finally, the eleventh and

twelfth tests bypass HIP and instruct SLEEK to check entailments that BndP is unable to

help verify.

For brevity, we report here the timings obtained only with the Z3 backend. Usually, the

choice of backend does not make much difference, but in a few cases, e.g. read_ops and

join_ent, choosing MiniSat can degrade the performance by a factor of 10. We leave the

investigation of this behavior for future work.

Evaluation B: Standalone. While verifying programs, and their associated separation

logic entailments is really the main goal, it is not so easy to casually develop HIP and

SLEEK input files that exercise share provers aggressively. We designed a benchmark of

53 SAT and 50 IMP queries, many of which we specifically designed to stress a share

prover in various tricky ways, including heavily skewed tree constants, deep heterogenous

tree constants, numerous unconstrained variables, and a number of others.

ShP solved the entire test suite in 1.4s; 24 SAT checks and 18 IMP checks reached the

Chapter 4. Complete decision procedures for tree share constraints 117

underlying solver. BndP could solve fewer than 10% of the queries.

4.5 Conclusion

We have shown how to extract a system of equations over a sophisticated fractional share

model from separation logic formulae. We have developed a solver for the equation systems

and proven that the associated problems are decidable. We have integrated our solver into the

HIP/SLEEK verification toolset and benchmarked its performance to show that the system

is usable in practice. In the related paper [LGH12], we claimed that our decision procedures

could also handle non-zero constraints of the form x 6= ◦ by decomposing additionally logn

steps where n is the number of such constraints. Unfortunately, our proof techniques for

SAT and IMP could not be generalized accordingly. As we shall see in Chapter 5, the

solvers in this chapter are indeed buggy for nonzero variables when being compared to our

new certified solvers that can handle negative constraints of the form ¬(a⊕ b = c).

Chapter 5
Complete certified procedures for tree share

constraints

Norther Winslow: I’ve been working

on this poem for 12 years.

Young Ed Bloom: Really?

Norther Winslow: There’s a lot of

expectation. I don’t wanna disappoint

my fans.

Young Ed Bloom: May I?

Young Ed Bloom: [Edward reads the

poem on the notebook] The grass so

green. Skies so blue. Spectre is really

great!

Young Ed Bloom: It’s only three

lines long.

Norther Winslow: This is why you

should never show a work in progress.

Big Fish (2003).

In Chapter 4, we developed two decision procedures SAT and IMP to solve the satisfiability

(SAT) and entailment problem (IMP) over ⊕-equations. Our decision procedures are

complete in the sense that they always return the correct result for any formatted input.

Their correctness is carefully justified on paper whereas the key theoretical results are

checked in Coq. The main drawback of our procedures is that they do not handle properly

disequation constraints of the form ¬(a⊕ b = c). We would like to clarify that it is not an

118

Chapter 5. Complete certified procedures for tree share constraints 119

implementation complication but rather a technical difficulty: the key theoretical results

are no longer true for disequations. Therefore, we need a different treatment to handle

disequations. Nevertheless, automatic tools like HIP/SLEEK actually have disequations in

their proofs, e.g., ¬(π = ◦), to assert that a share is positive as a side condition for maps-to

x
π7−→ v.

In this chapter, we introduce two decision procedures to handle SAT and IMP with

disequations. To tackle this problem, we provide several new key theoretical results that help

shape the correctness of our new procedures. To distinguish from the old procedures, we

will refer our new procedures as GSAT and GIMP as for “general satisfiability” and “general

implication”. Correspondingly, two new problems are called GSAT and GIMP. We make

another major contribution by implementing, optimizing and certifying GSAT and GIMP in

Coq native environment. Lastly, our procedures are extracted into OCaml and benchmarked

in HIP/SLEEK with better performance compared to the old tools.

We divide the chapter into the following sections∗:

1. In §5.1, we introduce two new problems over share equation systems with disequations,

namely the general satisfiability (GSAT) and general implication (GIMP).

2. In §5.2, we overview the architecture of our two solvers GSAT and GIMP.

3. In §5.3 and §5.4, we explain the mechanism of our solvers together with illustrated

examples.

4. In §5.5, we carry out the formal soundness proof of our solvers.

5. In §5.6, we discuss several performance-enhancing components that help optimize the

solvers.

6. In §5.7, we report our benchmarking in HIP/SLEEK.

7. In §5.8, we summarize the implemented Coq files together with the certified proof.

8. In §5.9, we draw our conclusion.

∗The materials in this chapter are taken from the paper “A Certified Decision Procedure for Tree
Shares” [LNHC17], a joint work with Thanh-Toan Nguyen, Aquinas Hobor and Wei-Ngan Chin.

Chapter 5. Complete certified procedures for tree share constraints 120

5.1 Disequations over shares and their motivative problems

5.1.1 Disequations over tree shares

Recall from §4.1.1 that, given a SL entailment P ` Q with fractional permissions, we can

extract a heap constraint H1 ` H2 and a share constraint Σ1 ` Σ2 in which Σ1, Σ2 are share

equation systems. On one hand, there are standard techniques and proof systems in SL

that help handle the heap constraint. On the other hand, it is not obvious how to solve

these share constraints, especially when the tree share domain is infinite and thus trivial

brute-force is not applicable. Often, automatic tools also require shares to be positive (not ◦)

to indicate the read permission. This condition is implicitly assumed in the SL entailments

and only becomes explicit when the share solver is called.

Example 5.1.1. The entailment x v17−→ 1 ∗ y
◦ •
7−−−→ 2 ` x

v27−→ 1 ∗ > yields the following

entailment over tree shares (where v1, v2, v3 are universal variables):

v1 6= ◦ ∧ v3 =
◦ •

` ∃v4. v2 ⊕ v4 = v1 ∧ v2 6= ◦.

Notice that inequality a 6= b is a special case of disequation, i.e., ¬(a⊕ ◦ = b). This share

entailment is valid because we can choose v2 = v1 and v4 = ◦. /

Tree constraints are nontrivial to solve because the search space is infinite, e.g., v1 ⊕ v2 = •

has infinitely many solutions (v1, v2) ∈ {(•, ◦), (
• ◦

,
◦ •

), . . .}. Thus in order to solve

these constraints, it is essential to obtain theoretical insights about the tree structures. In

Chapter 4, we proved that ⊕-equations for SAT and IMP satisfy the small model property

(Theorems 4.2.1 and 4.2.3) in which the search space can be restricted to trees of height

at most the height of the constraint. Unfortunately, this key result is no longer true for

⊕-disequation as demonstrated below.

Example 5.1.2. Consider the constraint of height zero x⊕ y = • ∧ x 6= ◦ ∧ y 6= ◦. As

one might check, it has no solution of height zero. But it has solution of height one (and

Chapter 5. Complete certified procedures for tree share constraints 121

higher), e.g., x =
• ◦

and y =
◦ •

. /

We overload the share equation system Σ to contain disequations:

Definition 5.1.1. A share equation system Σ is a quadruple (l∃, l=, l+, l−) in which:

1. l∃ is the list of existential variables.

2. l= is the list of equalities π1 = π2.

3. l+ is the list of equations π1 ⊕ π2 = π3.

4. l− is the list of disequations ¬(π1 ⊕ π2 = π3).

For convenience, we will usually illustrate an equation system as Σ = {x1, . . . , xn, g1, . . . , gm}

in which xi is an existential variable and gi is either equality, equation or disequation. More-

over, the definitions of context and solution remain unchanged as in Definition 4.1.2. For

convenience, there is a small change in notation, namely we will use ρ instead of S for

context. /

Example 5.1.3. The constraint in Example 5.1.2 is represented by the equation system

Σ = {x⊕ y = •, x 6= ◦, y 6= ◦}. The context ρ = {x =
• ◦

, y =
◦ •

} is a solution of Σ. /

5.1.2 Problem formulation

Here we provide formal descriptions of the two problems over tree shares, namely the general

satisfiabilityGSAT and general implicationGIMP. Let Σ,Σ1,Σ2 be share equation systems

defined in 5.1.1. We are interested in constructing sound and complete procedures to handle

the following queries:

1. GSAT(Σ): Is Σ satisfiable, i.e., is there a solution for Σ:

∃ρ. ρ |= Σ.

2. GIMP(Σ1,Σ2): Does Σ1 entail Σ2, i.e., are all solutions of Σ1 also solutions of Σ2:

Σ1 ` Σ2 iff ∀ρ. ρ |= Σ1 → ρ |= Σ2.

Chapter 5. Complete certified procedures for tree share constraints 122

Example 5.1.4. The entailment in Example 5.1.2 is an instance of GIMP:

{v1 6= ◦, v3 =
◦ •

} ` {v4, v2 ⊕ v4 = v1, v2 6= ◦}.

/

Despite allowing negative clauses, entailment is not subsumed by satisfiability because of

the quantifier alternation ∀∃ in the consequent. One interesting exercise is to examine

the metatheoretical properties of tree shares given in Figure 2.3. Several of these are the

standard properties of separation algebras [COY07], but others are part of what make the tree

share model special. In particular, tree shares are the only model of fractional permissions

that simultaneously satisfy Disjointness (forces the tree predicate—equation 1.3—to behave

properly), Cross-split (used e.g. in settings involving overlapping data structures), and

Infinite splittability (to verify divide-and-conquer algorithms). Encouragingly, all of the

axioms except for “Unit” are expressible as entailments in our format; e.g. associativity is:

{x⊕ a = b, y ⊕ z = a} ` {c, x⊕ y = c, c⊕ z = b}.

Unit requires the order of quantifiers to swap; our format can express the weaker “Multi-unit

axiom” ∀x. ∃u. x⊕ u = x as well as ∀x. x⊕ ◦ = x:

∅ ` {u, x⊕ u = x} and ∅ ` {x⊕ ◦ = x}.

where ∅ indicates the empty share equation system.

5.2 Overview of our decision procedures

5.2.1 The architecture of GSAT and GIMP

For convenience, we use GSAT and GIMP to refer to the problems GSAT and GIMP for

the decision procedures themselves. Although we are mainly interested in the construction of

the entailment checker GIMP (as the tree share constraints extracted from HIP/SLEEK are

Chapter 5. Complete certified procedures for tree share constraints 123

PARTITION BOUND SIMPLIFY DECOMPOSE TRANSFORM

SIMPLIFYINTERPRETSMT_SOLVERGSAT

PARTITION BOUND SIMPLIFY GSAT DECOMPOSE

TRANSFORMSIMPLIFYINTERPRETSMT_SOLVERGIMP

Figure 5.1: Two decision procedures GSAT and GIMP implemented in Coq

of entailment form), we also need the satisfiability checker GSAT for two main reasons. First,

GSAT helps to prune the search space; e.g., if the antecedent Σ1 for GIMP is unsatisfiable,

we can immediately conclude Σ1 ` Σ2. Second, the correctness of some subroutines in

GIMP(Σ1,Σ2) requires the outcome of GSAT(Σ1) as one of the critical conditions.

The architecture of our system is given in Figure 5.1. We have two procedures to solve

problems over share formulas, one for satisfiability and the other for entailment, both written

in Gallina and certified in Coq. Identically-named components in the two procedures are

similar in spirit but not identical in operation; thus for example there are two different

SIMPLIFY components, one for GSAT and another for GIMP. The PARTITION, BOUND, and

SIMPLIFY components substantially improve the performance of our procedures in practice

but are not complete solvers: in the worst case they do nothing. Since they are included for

performance we will discuss them in more detail in §5.6.

The DECOMPOSE and TRANSFORM components form the heart of our procedure. While

the ⊕ operation has many useful properties that enable sophisticated reasoning about shared

ownership in program verifications (e.g. Figure 2.3), they are not strong enough for techniques

like Gaussian elimination (which even in Q cannot handle negative clauses). In §5.5 we will

describe DECOMPOSE in detail after developing the necessary theory. Briefly, DECOMPOSE

takes a system of equations with constants of arbitrary complexity and eventually produces

a much larger equivalent system in which each constant is either ◦ or • (i.e., the final system

has height zero).

Chapter 5. Complete certified procedures for tree share constraints 124

TRANSFORM is a very sophisticated component mathematically, yet also the simplest

computationally: it just changes the type of the system. That is, it inputs a tree system

of height zero and outputs an equivalent, essentially identical Boolean system. The only

actual computational content is by swapping ◦ for ⊥ and • for >. Recall from §2.2.1, the

join relation on Booleans is simply disjoint disjunction:

>⊕⊥ = > ⊥⊕> = > ⊥⊕⊥ = ⊥.

The last option, >⊕>, is undefined.

INTERPRET translates Boolean systems of equations into Boolean sentences by rewriting

equations and disequations using the rules:

π1 ⊕ π2 = π3 (π1 ∧ ¬π2 ∧ π3) ∨ (¬π1 ∧ π2 ∧ π3) ∨ (¬π1 ∧ ¬π2 ∧ ¬π3)

¬(π1 ⊕ π2 = π3) (¬π1 ∨ π2 ∨ ¬π3) ∧ (π1 ∨ ¬π2 ∨ ¬π3) ∧ (π1 ∨ π2 ∨ π3)

Next, it adds the appropriate quantifiers depending on the query type to reach a closed

sentence. INTERPRET’s code and correctness proof are straightforward.

SMT_SOLVER uses simple quantifier elimination to check the validity of boolean sentences.

Our SMT solver is rather naïve, and thus is the performance bottleneck of our tool, but

we could not find a suitable Gallina alternative. As discussed in §5.6, despite its naiveté

our overall performance seems acceptable in practice due to the heuristics in PARTITION,

BOUND, and SIMPLIFY.

5.2.2 Basic notations and definitions

We use nil to denote the empty list, [e1, . . . , en] to represent a list’s content, and l ++ l′ for

list concatenation. We use the metavariable η to represent a single disequation. The symbols

Σ and Π are reserved for systems and pairs of systems respectively; if the exact form of our

systems is not important or is clear from the context, we may refer it as Γ. The symbol ρ

and S are for contexts and solutions respectively. We use |τ | to indicate the height of τ .

Chapter 5. Complete certified procedures for tree share constraints 125

Also, we will overload the height function | · | for equation systems and contexts to indicate

the height of the highest tree constant. For a tree τ , we let τl and τr be the left and right

sub-trees of τ , i.e., τ = τl = τr if τ ∈ {◦, •} and τ =
τl τr

otherwise.

Example 5.2.1. Let Σ1 = {x⊕
• ◦

= y}, Σ2 = {y 6= ◦} and Π = (Σ1,Σ2) then |Σ1| = 1,

|Σ2| = 0 and |Π| = 1. Also, the context ρ = {x = ◦, y =
• ◦

} is a solution of Σ1. For the

tree τ =

• ◦ ◦ •

, its left and right subtree are τl =
• ◦

and τr =
◦ •

. /

We define several basic systems for GSAT and GIMP as the building blocks of the decision

procedures:

Definition 5.2.1. Let Σ,Σ1,Σ2 be share equation systems and η, η1, η2 disequations. Let l

be a list of disequations. We define Σl to be the new equation system in which the disequation

list in Σ is replaced with l. For convenience, we write Ση as shortcut for Σ[η], and Σ+ as

shortcut for Σnil. Then:

1. If the disequation list in Σ is empty then Σ is called a positive system.

2. If there is exactly one disequation in Σ then Σ is called a singleton system.

3. If Σ1 is positive and Σ2 is singleton then (Σ1,Σ2) is called a Z-system.

4. If both Σ1 and Σ2 are singleton then (Σ1,Σ2) is called a S-system.

In particular, Σ+ is always a positive system, Ση is always a singleton system, (Σ+
1 ,Σ

η
2) is

always a Z-system, and (Ση1
1 ,Σ

η2
2) is always an S-system. /

Example 5.2.2. Let Σ1 = {x ⊕ y = z, x 6= ◦}, Σ2 = {w, z ⊕ w = •, z 6= ◦}, η1 : y 6= ◦,

η2 : w 6= ◦ then:

1. Σ+
1 = {x⊕ y = z} and Ση1

1 = {x⊕ y = z, y 6= ◦}.

2. Σ+
2 = {w, z ⊕ w = •} and Ση2

2 = {w, z ⊕ w = •, w 6= ◦}.

/

Chapter 5. Complete certified procedures for tree share constraints 126

5.3 Decision procedure GSAT

5.3.1 Overview of GSAT

Algorithm 4 Solver GSAT for systems with disequations
1: function GSAT(Σ)
2: if SAT(Σ+) = ⊥ then return ⊥
3: else if l− = nil then . l− is the disequation list in Σ
4: return >
5: else let l− = [η1, . . . , ηn]
6: return

∧n
i=1 SSAT(Σηi)

7: end if
8: end function

We propose the procedure GSAT to solve GSAT of equation systems with disequations.

For GSAT(Σ), the existential list in Σ is redundant and thus will be ignored. Our new

decision procedure GSAT also makes use of the old decision procedure SAT from §4.2 for

systems without disequations, e.g., positive systems. To help the readers gain intuition of the

procedure, we will abstract away all the tedious low-level implementations and only discuss

about the high-level structure. The execution of GSAT consists of two major steps which are

described in Algorithm 4. At first, the system Σ is separated into a list of singleton systems;

each contains a single disequation taken from the disequation list of Σ. In the second step,

each singleton system is solved individually using the subroutine SSAT, then their results

are conjoined to determine the result of GSAT(Σ).

Algorithm 5 Solver SSAT for singleton systems
1: function SSAT(Ση)
Require: Ση is singleton and Σ+ is satisfiable
2: [Σ1, . . . ,Σn]← DECOMPOSE(Ση)
3: transform each Σi into Boolean formula Φi

4: Φ← ∨n
i=1 Φi

5: return SMT_SOLVER(Φ)
6: end function

The solver SSAT for singleton system (Algorithm 5) calls another subroutine DECOMPOSE

(Algorithm 6) that helps decompose a share system into sub-systems of height zero. These

subs-systems subsequently go though a two-phase process to be transformed into boolean

formulas. In the first phase, the subroutine TRANSFORM trivially converts tree type into

Chapter 5. Complete certified procedures for tree share constraints 127

boolean type using the conversions • > and ◦ ⊥. Correspondingly, the share system is

converted into the boolean system. In the second phase, the subroutine INTERPRET helps

to interpret the boolean system into an equivalent boolean formula by adding necessary

quantifiers (∃ for GSAT, ∀ for GIMP) and conjunctives among equations and disequations.

For skeptical readers, the correctness of GSAT is mentioned in Theorem 5.3.1 and its proof

is verified completely in Coq.

Theorem 5.3.1 ([Sol]). Let Σ be a share system then Σ is satisfiable iff GSAT(Σ) = >. /

Algorithm 6 Decompose system into sub-systems of height zero
1: function DECOMPOSE(Γ)
Require: Γ is either one system (GSAT) or pair of systems (GIMP)
Ensure: A list of sub-systems of height zero
2: if |Γ| = 0 then return [Γ]
3: else
4: (Γ1,Γ2)← SINGLE_DECOMPOSE(Γ)
5: return DECOMPOSE(Γ1) ++ DECOMPOSE(Γ2)
6: end if
7: end function
8:
9: function SINGLE_DECOMPOSE(Γ)
Require: Γ is either one system (GSAT) or pair of systems (GIMP)
Ensure: A pair of left and right sub-system
10: if |Γ| = 0 then return (Γ,Γ)
11: else
12: Γl ← replace each tree constant τ in Γ with its left sub-tree τl
13: Γr ← replace each tree constant τ in Γ with its right sub-tree τr
14: return (Γl,Γr)
15: end if
16: end function

5.3.2 Example of GSAT

Let Σ = {v1 ⊕ v2 = •, v1 6=
• ◦

, v2 6= ◦} then GSAT(Σ) is equivalent to the formula:

Φ = ∃v1∃v2. v1 ⊕ v2 = • ∧ v1 6=
• ◦

∧ v2 6= ◦.

The formula Φ is valid because the interpretation v1 =
◦ •

, v2 =
• ◦

satisfies Φ.

Chapter 5. Complete certified procedures for tree share constraints 128

We now simulate the execution of GSAT using Σ as input. First, the old solver SAT is called

to check the system Σ+ = {v1 ⊕ v2 = •} which is equivalent to Φ+ = ∃v1∃v2. v1 ⊕ v2 = •.

As Σ+ is satisfiable (e.g. v1 = ◦, v2 = •) and there are two disequations in Σ, we split Σ

into two singleton systems:

Σ1 = {v1 ⊕ v2 = •, v1 6=
• ◦

} and Σ2 = {v1 ⊕ v2 = •, v2 6= ◦}.

When the solver SSAT(Σ1) is called, the singleton system Σ1 is split into two sub-systems of

height zero Σ1
1 and Σ1

2 by DECOMPOSE:

Σ1
1 = {v1 ⊕ v2 = •, v1 6= •} and Σ1

2 = {v1 ⊕ v2 = •, v1 6= ◦}.

In the next step, both Σ1
1 and Σ1

2 are transformed into Boolean formulas Φ1
1 and Φ1

2:

Φ1
1 = ∃v1∃v2. ((v1 ∧ ¬v2) ∨ (¬v1 ∧ v2)) ∧ ¬v1.

Φ1
2 = ∃v1∃v2. ((v1 ∧ ¬v2) ∨ (¬v1 ∧ v2)) ∧ v1.

As both Φ1
1 and Φ1

2 are valid, we have SSAT(Σ1) = >. Similarly, one can verify that

SSAT(Σ2) = >. Hence, by combining the two results, we get GSAT(Σ) = >.

We finish §5.3 by pointing out a decidability result of ⊕:

Corollary 5.3.1. The ∃-theory of the structure 〈T,⊕〉 is decidable. /

Proof. Let Ψ be a quantifier-free formula, we transform Ψ into Disjunctive Normal Form∨n
i=1 Ψi then each Ψi can be represented as a system Σi. Consequently, Ψ is satisfiable iff

some Σi is satisfiable which can be solved by GSAT. Thus the result follows.

Chapter 5. Complete certified procedures for tree share constraints 129

Algorithm 7 Solver GIMP for entailment of share systems with disequations
1: function IMP(Σ1,Σ2)
2: if GSAT(Σ1) = ⊥ then return ⊥
3: else if IMP(Σ+

1 ,Σ+
2) = ⊥ then return ⊥

4: else let l−1 , l−2 be disequation lists of Σ1,Σ2
5: if l−2 = nil then return >
6: else let l−2 = [η1

2, . . . , η
n
2]

7: if l−1 = nil then return
∧n
i=1 ZIMP(Σ+

1 ,Σ
ηi2
2)

8: else let l−1 = [η1
1, . . . , η

m
1]

9: for i = 1 . . . n and j = 1 . . .m do
10: let Zi ← ZIMP(Σ+

1 ,Σ
ηi2
2) and Sji ← SIMP(Σηj1

1 ,Σ
ηi2
2)

11: end for
12: return

∧n
i=1

(
Zi ∨ (∨mj=1 S

j
i)
)

13: end if
14: end if
15: end if
16: end function

5.4 Decision procedure GIMP

5.4.1 Overview of GIMP

Our GIMP procedure (Algorithm 7) deploys a similar strategy as for GSAT by reducing the

entailment into several entailments of the basic systems (e.g. Z-system and S-system). In

particular, GIMP verifies the entailment Σ1 ` Σ2 by first calling two solvers GSAT(Σ1) and

IMP(Σ+
1 ,Σ+

2) (line 2 and 3). Then the lengths of the two disequation lists (l−1 in Σ1 and l−2
in Σ2) critically determine the subsequent flow of GIMP. In detail, there are three different

cases of l−1 and l−2 that fully cover all the scenarios:

1. If the list l−2 is empty (line 5) then the answer is equivalent to IMP(Σ+
1 ,Σ+

2), i.e. >.

2. Otherwise, we check whether l−1 is empty (line 7) in which the answer is conjoined

from several entailments of Z-systems∗ (Σ1,Σ
ηi2
2); each is constructed from (Σ1,Σ2) by

removing all disequations in Σ2 except one. Here we call the subroutine ZIMP which is

a specialized solver for entailment of Z-systems.

∗Recall from Definition 5.1.1 that a Z-system is a pair of share systems (Σa,Σb) in which Σa has no
disequation while Σb has exactly one disequation

Chapter 5. Complete certified procedures for tree share constraints 130

3. The third case is when neither l−1 nor l−2 is empty (line 8). Then the result of Σ1 ` Σ2 is

computed by taking the conjunction of several entailments of Z-systems and S-systems∗.

We use SIMP as a specialized solver to check entailment for S-systems.

Algorithm 8 Solvers for entailment of Z-systems and S-systems
1: function ZIMP(Σ1,Σ2)
Require: (Σ1,Σ2) is Z-system, Σ1 is satisfiable and Σ1 ` Σ+

2
2: [Γ1, . . . ,Γn]← DECOMPOSE(Σ1,Σ2)
3: transform each Γi into Boolean formula Φi

4: Φ← ∨n
i=1 Φi

5: return SMT_SOLVER(Φ)
6: end function
7:
8: function SIMP(Σ1,Σ2)
Require: (Σ1,Σ2) is S-system, Σ+

1 is satisfiable, Σ+
1 ` Σ+

2 and Σ+
1 6` Σ2

9: [Γ1, . . . ,Γn]← DECOMPOSE(Σ1,Σ2)
10: transform each Γi into Boolean formula Φi

11: Φ← ∧n
i=1 Φi

12: return SMT_SOLVER(Φ)
13: end function

Two specialized solvers ZIMP and SIMP are described in Algorithm 8. For ZIMP, we first call

the subroutine DECOMPOSE to split the Z-system into sub-systems of height zero. Next,

each sub-system is transformed in to Boolean formula by adding necessary quantifiers and

logical connectives. These Boolean formulas are then combined using disjunctions to form a

single boolean formula; and this formula is solved using standard SMT solvers to determine

the result of the entailment. The procedure for SIMP has a similar structure, except that the

final Boolean formula is formed using conjunctions. Also, it is worth noticing that there are

certain preconditions for both solvers; and all of them are important to shape the correctness

of the solvers. The correctness of GIMP is mentioned in Theorem 5.4.1; and its proof is

verified entirely in Coq.

Theorem 5.4.1 ([Sol]). Let Σ1,Σ2 be share systems then Σ1 ` Σ2 iff GIMP(Σ1,Σ2) = >. /

∗Recall from Definition 5.1.1 that a S-system is a pair of share systems (Σa,Σb) in which each Σa and Σb
has exactly one disequation

Chapter 5. Complete certified procedures for tree share constraints 131

5.4.2 Example of GIMP

The infinite splitability of tree share in Figure 2.3:

∀v. (v 6= ◦ → ∃v1∃v2. v1 ⊕ v2 = v ∧ v1 6= ◦ ∧ v2 6= ◦).

can be represented as the entailment Σ1 ` Σ2 s.t.:

Σ1 = {v 6= ◦} ` Σ2 = {v1, v2, v1 ⊕ v2 = v, v1 6= ◦, v2 6= ◦}.

We will simulate the execution of GIMP using (Σ1,Σ2) as input. This pair of system goes

though Algorithm 7 until line 8 as both disequation lists are nonempty. As there are two

disequations in Σ2, namely η1 : v1 6= ◦ and η2 : v2 6= ◦, we need to verify the conjunction

P1 ∧ P2 s.t.:

P1 = ZIMP(Σ+
1 ,Σ

η1
2) ∨ SIMP(Σ1,Ση1

2) and P2 = ZIMP(Σ+
1 ,Σ

η2
2) ∨ SIMP(Σ1,Ση2

2).

For P1, ZIMP(Σ+
1 ,Σ

η1
2) is equivalent to the validity of the formula:

∀v. (> → ∃v1∃v2. v1 ⊕ v2 = v ∧ v1 6= ◦).

Informally, the above sentence is invalid by choosing v = ◦ to force both v1 and v2 be ◦.

Formally, it is transformed into the following boolean formula:

∀v. (> → ∃v1∃v2. [(v1 ∧ ¬v2 ∧ v3) ∨ (¬v1 ∧ v2 ∧ v3) ∨ (¬v1¬v2¬v3)] ∧ ¬v1).

which is reported to be invalid by SMT solver. Likewise, SIMP(Σ1,Ση1
2) is equivalent to the

validity of the formula:

∀v. (v 6= ◦ → ∃v1∃v2. v1 ⊕ v2 = v ∧ v1 6= ◦).

Chapter 5. Complete certified procedures for tree share constraints 132

which is transformed into the Boolean formula:

Φ1 = ∀v. (v → ∃v1∃v2. ((¬v1 ∧ ¬v2 ∧ ¬v) ∨ (v1 ∧ ¬v2 ∧ v) ∨ (¬v1 ∧ v2 ∧ v)) ∧ v1).

As Φ1 is valid, P1 is true. Similarly, one may check that P2 also holds and thus Σ1 ` Σ2.

Having described the heart of our decision procedures, what remains is to describe the

practical aspects of their development and evaluation. In §5.5, we provide the key theoretical

results that shape the correctness of GSAT and GIMP. In §5.6 we describe various techniques

that enable good performance in practice. In §5.7 we describe how we benchmarked our tool

running inside Coq, running as a standalone compiled program, and after incorporating it

into the HIP/SLEEK verification toolset. In §5.8 we document the files in the development

itself; we have approximately 38.6k lines of code in 31 files.

5.5 Correctness of GSAT and GIMP

The correctness of our decision procedures makes use of rounding functions and averaging

function defined in §4.3. We recall left rounding b←−τ cn (right rounding b−→τ cn), which unfolds

τ into full binary tree of height n, removes all left (or right) leaves and then folds it back to

canonical form; and averaging τ1 5n τ2, which unfolds τ1, τ2 into full binary trees of height

n − 1, combines their leaves pairwise and then folds the combined tree back to canonical

form. We introduce for clarity two new functions: pair rounding bτcn = (b←−τ cn , b
−→τ cn) and

combine Combine(τ1, τ2), which is simply the inverse function of Split in §2.2.2.

We illustrate these functions in Figure 5.2 to help readers gain intuition of these functions’

mechanism. Our example is the tree

• ◦ • ◦ •

at height 3 together with its derived

trees. To help track what is going on in b←−τ cn, b
−→τ cn, and τ1 5τ2 n we have highlighted the

left leaf in each pair with the color red and the right leaf in each pair with the color blue.

For Split(τ) and Combine(τ1, τ2), we color red for leaves from the left subtree and blue for

leaves from the right subtree.

Lemma 5.5.1 ([Sol]). Let Tn be the set of tree shares of height at most n. We overload

Chapter 5. Complete certified procedures for tree share constraints 133

←−−−−−−−−−−−−

• ◦ • ◦ •

3

∼=

←−−−−−−−−−−−−−−−−−−−−

• • ◦ ◦ • ◦ • •

3

=
• ◦ • •

∼=
• ◦ •

−−−−−−−−−−−−→

• ◦ • ◦ •

3

∼=

−−−−−−−−−−−−−−−−−−−−→

• • ◦ ◦ • ◦ • •

3

=
• ◦ ◦ •

∼=
• ◦ ◦ •

• ◦ •
53

• ◦ ◦ •

∼=
• ◦ • •

53

• ◦ ◦ •
=

• • ◦ ◦ • ◦ • •

∼=

• ◦ • ◦ •

• ◦ • ◦ •

Split7−−→ (
• ◦

,

• ◦
•
) Combine7−−−−−→

• ◦ • ◦ •

Figure 5.2: Illustrated examples of applying the tree operators

the join ⊕ over the domain Tn × Tm by applying the normal join component-wise, i.e.:

(τ1, τ2)⊕ (τ ′1, τ ′2) def= (τ1 ⊕ τ ′1, τ2 ⊕ τ ′2).

Then both the pair rounding function b·cn+1 : 〈Tn+1,⊕〉 7→ 〈Tn × Tn,⊕〉 and split function

Split : 〈Tn+1,⊕〉 7→ 〈Tn ×Tn,⊕〉 are isomorphisms, namely they are both bijections Tn+1 7→

Tn × Tn, and they preserve the join ⊕:

τ1 ⊕ τ2 = τ3 iff Split(τ1)⊕ Split(τ2) = Split(τ3) iff bτ1cn+1 ⊕ bτ2cn+1 = bτ3cn+1.

Furthermore:

1. If |τ | ≤ n then b τ cn+1 = (τ, τ).

2. If |τ | = n+ 1 then | b←−τ cn+1 | < |τ | and | b
−→τ cn+1 | < |τ |.

3. Let Split(τ) = (τl, τr). If |τ | = 0 then τl = τr = τ , otherwise |τl| < |τ | and |τr| < |τ |.

Chapter 5. Complete certified procedures for tree share constraints 134

4. On+1 is the inverse function of b·cn+1.

/

Proof intuition. By induction on the tree height.

Although both the pair rounding function b·cn and split function Split are isomorphism, they

are critically different in terms of functionality. In brief, the function b·cn only affects trees

of height n whereas the function Split affects all trees except • and ◦. As a result, b·cn helps

us ‘refine’ big solutions into smaller ones while Combine is used to decompose big systems

into smaller ones:

Corollary 5.5.1 ([Sol]). Let ρ be a context of Σ then:

1. If n ≥ |ρ| > |Σ| and bρcn = (ρl, ρr) then ρ |= Σ iff both ρl |= Σ and ρr |= Σ.

2. If n > |ρ| then ρl = ρr = ρ, otherwise if n = |ρ| then |ρl| < n and |ρr| < n.

3. If Split(Σ) = (Σl,Σr) and Split(ρ) = (ρl, ρr) then ρ |= Σ iff both ρl |= Σl and ρr |= Σr.

4. If |ρ| = 0 then ρl = ρr = ρ, otherwise |ρl| < |ρ| and |ρr| < |ρ|. If |Σ| = 0 then

Σl = Σr = Σ, otherwise if |Σl| < |Σ| and |Σr| < |Σ|.

/

Proof intuition. These results are directly generalized from Lemma 5.5.1.

5.5.1 Domain reduction

We propose the domain reduction technique to reduce the search space from infinite to finite.

Lemma 5.5.2. We use uppercase letters to denote sets, e.g., T and S. Then:

1. Emptiness: Let T ⊆ S and f : S 7→ T . Then S is empty iff T is empty

Generally, let Ti ⊆ Ti+1 and fi : Ti+1 7→ Ti for i = 1 . . . n then

n+1⋃
i=1

Ti is empty iff T1 is empty.

Chapter 5. Complete certified procedures for tree share constraints 135

2. Inclusion: Let T ⊆ S and f : S 7→ T k a k-ary bijection s.t. f−1((T ∩ S′)k) ⊆ S′ then:

S ⊆ S′ iff T ⊆ S′.

Generally, let Ti ⊆ Ti+1 and fi : Ti+1 7→ T kii be ki-ary bijection for i = 1 . . . n s.t.

f−1
i ((Ti ∩ S′)ki) ⊆ S′ then

Tn+1 =
n+1⋃
i=1

Ti ⊆ S′ iff T1 ⊆ S′.

/

Proof. The emptiness problem is trivial so we only focus on the inclusion problem. Only

the ⇐ direction is nontrivial: assume T ⊆ S′ and let x ∈ S then f(x) ∈ f(S) = T k, Thus

f(x) ∈ T k ∩ S′k = (T ∩ S′)k which implies x ∈ f−1((T ∩ S′)k) ⊆ S′. This concludes S ⊆ S′.

The general case is done by induction over n. In detail, the base case n = 0 is trivial. Assume

Tk ⊆ S′ iff T1 ⊆ S′. The previous result gives us Tk+1 ⊆ S′ iff Tk ⊆ S′. Thus Tk+1 ⊆ S′ iff

T1 ⊆ S′ and the result follows by induction principle.

For convenience, we denote S(Σ) to be the set of all solutions of Σ, and Si(Σ) ⊆ S(Σ) to

be the set of all solutions of height at most i.

Proof of Theorem 4.2.1 and 4.2.3. To demonstrate the usefulness of our domain reduc-

tion technique, we will use it to simplify the proof of finite height for SAT and IMP in

Chapter 4. Notice that the share systems do not contain disequations yet.

Let n = |Σ|, we classify the solution space of Σ into {Si(Σ)}∞i=n according to their heights.

Then it follows that Si(Σ) ⊆ Si+1(Σ) and b←−ρ ci+1 maps solutions in Si+1(Σ) (i.e. at most

height i+ 1) into solutions in Si(Σ) (i.e. at most height i). Thus by emptiness property in

Lemma 5.5.2, SAT(Σ) iff there exists a solution in Sn(Σ).

For IMP(Σ,Σ′), let n = |(Σ,Σ′)| be the height of the entailment Σ ` Σ′. Then for eachm > n,

the function fm+1(ρ) def= bρcm+1 is a bijection from Sm+1(Σ) to S2
m(Σ′). Here we overload

b·cm+1 over contexts by applying the pair rounding component-wise, i.e., bρcm+1 = (ρl, ρr)

Chapter 5. Complete certified procedures for tree share constraints 136

s.t.:

ρl(v) = τ1 ∧ ρr(v) = τ2 iff bρcm+1(v) = (τ1, τ2).

Furthermore, let ρ, ρ′ be solutions of both Σ and Σ′ and their height is at most m, i.e.:

ρ, ρ′ ∈ Sm(Σ) ∩ Sm(Σ′).

Then by Lemma 5.5.1, the context ρ′′ def= f−1
m+1(ρ, ρ′) = ρ 5m+1 ρ

′ is a solution of Σ′ and

its height is at most m+ 1. Thus:

f−1
m+1((Sm(Σ) ∩ S(Σ′))2) = f−1

m+1((Sm(Σ) ∩ Sm(Σ′))2) ⊆ S(Σ′).

By inclusion property in Lemma 5.5.2, it is sufficient to consider only solutions of height at

most n in Sn(Σ).

5.5.2 Correctness proof of Theorem 5.3.1

We now proceed to verify the correctness of Algorithm 4 for GSAT. The heart of GSAT is

the specialized solver SSAT for singleton systems. As a result, we need to verify that SSAT

is sound. First, we provide several key insights about singleton systems, e.g., how a ‘big’

solution is decomposed into smaller ones:

Lemma 5.5.3 ([Sol]). Let Ση be a singleton system and ρ a context of Ση s.t. |ρ| = n > |Ση|

and bρcn = (ρl, ρr) then:

1. If ρ |= Ση then both ρl |= Σ+ and ρr |= Σ+, and either ρl |= Ση or ρr |= Ση.

Conversely, if one of ρl, ρr is a solution of Σ+ and the other is a solution of Ση then

the context ρ = ρl 5n ρr is a solution of Ση.

2. Let Split(ρ)=(ρl, ρr) and Split(Ση)=(Σl,Σr). If ρ |= Ση then ρl |= Σ+
l and ρr |= Σ+

r .

Also, either ρl |= Σl or ρr |= Σr.

Conversely, if either ρl |= Σ+
l ∧ ρr |= Ση

r or ρl |= Ση
l ∧ ρr |= Σ+

r then ρ |= Ση.

Chapter 5. Complete certified procedures for tree share constraints 137

3. If SAT(Σ+) = > then:

SSAT(Ση) = > iff SSAT(Σi) = > for some Σi ∈ DECOMPOSE(Ση).

4. If |Ση| = 0 then SSAT(Ση) = > iff it has a solution of height zero.

/

Proof intuition. Prop. 1 and 2 can be derived directly from Lemma 5.5.1.

For Prop. 3, it is sufficient to prove for Split instead of DECOMPOSE as the latter can be

generalized by induction. For ⇒, let ρ |= Ση, Split(ρ) = (ρl, ρr), Split(Ση) = (Ση
l ,Ση

r). Then

from Prop. 2, either ρl |= Σl or ρr |= Σr. For ⇐, w.l.o.g. assume ρl |= Σl. As SAT(Σ+) = >,

there exists ρ′ |= Σ+. Let Split(ρ′) = (ρ′l, ρ′r) then Combine(ρl, ρ′r) |= Σ.

For Prop. 4, notice that if |Ση| = 0 then Split is the identity function,i.e., Split(Ση) = (Ση,Ση).

We conduct the proof using our domain reduction technique. First, we classify the solutions

of Ση into {Si(Ση)}∞i=0 according to their heights. Then, for each i ∈ N, it follows that

Si(Ση) ⊆ Si+1(Ση), and if ρ ∈ Si+1(Ση), then either ρl ∈ Si(Ση) or ρr ∈ Si(Ση) by Prop. 3

(i.e. one of them is a solution of height at most i for the singleton system Ση). As a result,

we can define a mapping from Si+1(Ση) to Si(Ση) by choosing the appropriate ρl/ρr which

is in Si(Ση). By the emptiness property in Lemma 5.5.2, it suffices to search for solutions of

height zero.

Using the above properties, we show that the specialized solver SSAT is sound with respect

to appropriate pre-condition:

Lemma 5.5.4 ([Sol]). If SAT(Σ+) = > then SSAT(Ση) = > iff Ση is satisfiable. /

Proof. By Prop. 3 in 5.5.3, it is equivalent to the satisfiability of one of the singleton sub-

systems of height zero in DECOMPOSE(Ση). By Prop 4 in 5.5.3, such sub-system must have

solution of height zero and thus can be transformed into a Boolean formula to be solved by

SMT solver. Hence the result follows.

Our next step is to show that GSAT(Σ) is equivalent to the conjunction of SSAT(Σηi)

Chapter 5. Complete certified procedures for tree share constraints 138

for each disequation ηi in Σ. Consequently, the main solver GSAT can just simply call the

specialized solver SSAT multiple times:

Lemma 5.5.5 ([Sol]). Let Σ be a share system then

GSAT(Σ) = > iff
∧

ηi∈ΣSSAT(Σηi) = >.

/

Proof. Let [η1, . . . , ηn] be the disequation list in Σ and Ai = S(Σηi) the solution space of

each singleton system Σηi then:

S(Σ) =
n⋂
i=1

Ai.

The original statement can be restated as “S(Σ) is nonempty iff each Ai is nonempty”. Only

the⇐ direction is nontrivial as for the other direction, any solution in S(Σ) is also a solution

in Ai. Let ρi ∈ Ai be a solution of Σηi . To construct a solution of Σ from {ρi}ni=1, we define

a sequence of contexts {ρ′i}ni=1 as follows:

ρ′1
def= ρ1, ρ

′
k

def= ρ′k−1 5nk
ρk.

where nk = max (|ρ′k−1|, |ρk|, |Σ|)+1. Intuitively, the averaging function helps to ‘accumulate’

the satisfiability of the disequations while preserves the satisfiability of the remaining

equations and equalities, i.e. ρ′j satisfies all equations in Σ and disequations η1, . . . , ηj by

Lemma 5.5.3:

ρ′j ∈
j⋂
i=1

Ai.

As a result, ρ′n ∈
⋂n
i=1Ai = S(Σ) is a solution of Σ.

Finally, we are ready to justify the correctness of Theorem 5.3.1:

Theorem 5.3.1 ([Sol]). Let Σ be a share system then Σ is satisfiable iff GSAT(Σ) = >.

Proof. As SAT(Σ+) is a necessary condition for GSAT(Σ), if SAT(Σ+) = ⊥ then we also

have GSAT(Σ) = ⊥. This helps explain lines 2-4. We need this fact to activate the condition

for Lemma 5.5.4.

Chapter 5. Complete certified procedures for tree share constraints 139

By Lemma 5.5.5, the system Σ is satisfiable iff SSAT(Σηi) = > for each disequation ηi in

Σ. This justifies the conjunction in line 6. Last but not least, Lemma 5.5.4 provides the

correctness for the specialized solver SSAT and thus completes the correctness proof for

GSAT as well.

5.5.3 Correctness proof of Theorem 5.4.1

Our decision procedure GIMP for entailments makes use of two specialized solvers ZIMP

and SIMP for Z-systems and S-systems respectively. Hence the correctness of GIMP also relies

on the correctness of ZIMP and SIMP. As a result, we first verify that our two specialized

solvers are sound. First, we prove several essential properties about two entailment problems

ZIMP and SIMP:

Lemma 5.5.6 ([Sol]). Let Σ1,Σ2 be share systems. Then:

1. If SAT(Σ+
1) = > and Σ+

1 ` Σ+
2 , then:

Σ+
1 ` Ση

2 iff Σa ` Σb for some (Σa,Σb) ∈ DECOMPOSE(Σ+
1 ,Σ

η
2).

2. If |(Σ+
1 ,Σ

η
2)| = 0, then:

Σ+
1 ` Ση

2 iff Σ+
1 ` Ση

2 for all contexts of height zero.

3. If SAT(Σ+
1) = > and Σ+

1 ` Σ+
2 and Σ+

1 6` Ση2
2 , then:

Ση1
1 ` Ση2

2 iff Σa ` Σb for each (Σa,Σb) ∈ DECOMPOSE(Ση1
1 ,Σ

η2
2).

4. If |(Ση1
1 ,Σ

η2
2)| = 0 and Σ+

1 ` Σ+
2 , then:

Ση1
1 ` Ση2

2 iff Ση1
1 ` Ση2

2 for all contexts of height zero.

/

Chapter 5. Complete certified procedures for tree share constraints 140

Proof. The preconditions here are essential for the soundness proof of our specialized solvers.

Fortunately, all of them are also necessary conditions for GIMP and can be checked by

known decision procedures. To make things simple, we will prove over Split instead of

DECOMPOSE as the latter is simply a repetitive application of the former and thus its

correctness can be proved by induction.

1. For ⇒, assume Σ+
1l 6` Σηl

2l and Σ+
1r 6` Σηr

2r. Then we can find two contexts ρl and ρr s.t.:

ρl |= Σ+
1l ∧ ρl 6|= Σηl

2l and ρr |= Σ+
1r ∧ ρr 6|= Σηr

2r (5.1)

Let ρ = Combine(ρl, ρr) then ρ |= Σ+
1 . As Σ+

1 ` Ση
2, we derive that ρ |= Ση

2. Thus

either ρl |= Σηl
2l or ρr |= Σηr

2r. This is a contradiction to equation 5.1.

For ⇐, w.l.o.g. assume Σ+
1l ` Σηl

2l. Let ρ |= Σ+
1 then ρl |= Σ+

1l and thus ρl |= Σηl
2l by

the entailment assumption. From the premise SAT(Σ+
1) = >, we can find ρ′ |= Σ+

1 .

Combine with the entailment premise Σ+
1 ` Σ+

2 , this gives us ρ′ |= Σ+
2 . As a result, let

Split(ρ′) = (ρ′l, ρ′r) then ρ′r |= Σ+
2r. Finally, let ρ′′ def= Combine(ρl, ρ′r). From the two

results ρl |= Σηl
1l and ρ′r |= Σ+

2r, we conclude ρ′′ |= Ση
2.

2. We prove using domain reduction. We classify the solution space S(Σ+
1) into {Si(Σ+

1)}∞i=1

s.t. Si(Σ+
1) ⊆ Si+1(Σ+

1) and let Split be the bijection from Si+1(Σ+
1) to S2

i (Σ+
1). Notice

that Split is the identity function for systems of height zero, i.e.:

Split(Σ+
1 ,Σ

η
2) = ((Σ+

1 ,Σ
η
2), (Σ+

1 ,Σ
η
2)).

Let ρl, ρr be two contexts of height at most k that both satisfy Σ+
1 and Ση

2, i.e.:

ρl, ρr ∈ Sk(Σ+
1) ∩ Sk(Ση

2).

Then it follows that the context ρ def= Combine(ρl, ρr) is also a solution of Ση
2. By the

inclusion property of domain reduction, it suffices to consider only height-0 solutions

in S0(Σ+
1).

3. For ⇒, it suffices to prove Ση1l
1l ` Ση2l

2l . Let ρl be a context s.t. ρl |= Ση1
1l , we will

Chapter 5. Complete certified procedures for tree share constraints 141

prove that ρl |= Ση2l
2l . From two premises SAT(Σ+

1) and IMP(Σ+
1 ,Σ+

2), we can find a

context ρ′ s.t.:

ρ′ |= Σ+
1 and ρ′ |= Σ+

2 .

Let Split(ρ′) = (ρ′l, ρ′r) and ρ def= Split(ρl, ρ′r). Then:

ρ′r |= Σ+
1r and ρr |= Σ+

2r and ρ |= Ση1
1 .

As a result, it follows from Ση1
1 ` Ση2

2 that ρ |= Ση2
2 . Consequently, either ρl |= Ση2l

2l

or ρ′r |= Ση2r
2r . On the other hand, the premise Σ+

1 6` Ση2
2 gives us ρ′ 6|= Ση2

2 and thus

ρ′r 6|= Ση2r
2r

∗. Hence it must be the case that ρl |= Ση2l
2l .

For ⇐, let ρ |= Ση1
1 then either ρl |= Ση1l

1l or ρr |= Ση1r
1r . W.l.o.g., assume ρl |= Ση1l

1l .

Then the entailment Ση1l
1l ` Ση2l

2l implies ρl |= Ση2l
2l . From the premise Σ+

1 ` Σ+
2 , we

deduce ρ |= Σ+
2 . As a result, ρr |= Σ+

2r. By combining two results ρl |= Ση2l
2l and

ρr |= Σ+
2r, we arrive at ρ |= Ση2

2 .

4. Only ⇐ is nontrivial. It suffices to prove the case when solution has height 1 and the

general case will follow by induction. As |(Ση1
1 ,Σ

η2
2)| = 0, the Split returns the same

share equation, i.e.:

Split(Ση1
1 ,Σ

η2
2) = ((Ση1

1 ,Σ
η2
2), (Ση1

1 ,Σ
η2
2)).

Let ρ ∈ S1(Ση1
1) be a height-1 solution of Ση1

1 and Split(ρ) = (ρl, ρr) then either

ρl ∈ S0(Ση1
1) or ρr ∈ S0(Ση1

1). W.l.o.g., assume ρl ∈ S0(Ση1
1) is a height-0 solution of

Ση2
1 . Then by the premise, we deduce that ρl |= Ση2

2 .

On the other hand, the entailment Σ+
1 ` Σ+

2 gives us ρ |= Σ+
2 and thus ρr |= Σ+

2 . By

combining two results ρl |= Ση2
2 and ρr |= Σ+

2 , we conclude that ρ |= Ση2
2 .

We proceed to verify the correctness of ZIMP and SIMP (Algorithm 8):

∗otherwise together with the fact ρl |= Σ+
2l we can deduce the contradiction Combine(ρl, ρ′r) = ρ′ |= Ση2

2

Chapter 5. Complete certified procedures for tree share constraints 142

Lemma 5.5.7 ([Sol]). Let Σ1,Σ2 be share systems and η, η1, η2 disequations. Then:

1. ZIMP(Σ+
1 ,Σ

η
2) = > iff Σ+

1 ` Ση
2.

2. SIMP(Ση1
1 ,Σ

η2
2) = > iff Ση1

1 ` Ση2
2 .

/

Proof. For entailment Σ+
1 ` Ση

2, we activate the preconditions in Lemma 5.5.6 by first

checking two necessary conditions SAT(Σ+
1) and Σ+

1 ` Σ+
2 . By Prop. 1 in Lemma 5.5.7, it is

sufficient to find a height-0 sub-system (Σa,Σb) in DECOMPOSE(Σ+
1 ,Σ

η
2) s.t. Σa ` Σb. This

justifies the disjunction form in line 4. Finally, Prop. 2 says that we only need to consider

solutions of height zero and thus the entailment Σa ` Σb can be transformed into Boolean

formula and handled by SMT solver. This completes the soundness proof for ZIMP.

For entailment Ση1
1 ` Ση2

2 , we first check two necessary conditions SAT(Σ+
1) and Σ+

1 ` Σ+
2

and the sufficient condition Σ+
1 ` Ση2

2 . If no trivial result can be drawn from these conditions

then by Prop. 3, it suffices to check Σa ` Σb for each pair (Σa,Σb) in DECOMPOSE(Ση1
1 ,Σ

η2
2).

This justifies the conjunction form in line 11 of SIMP. By Prop. 4, each entailment Σa ` Σb

only needs to hold for solutions of height zero and thus they can be handled by SMT solver.

Thus the correctness of SIMP is justified.

The second ingredient for soundness proof of GIMP is the reduction from general entailment

GIMP to the three special entailments IMP, ZIMP and SIMP:

Lemma 5.5.8 ([Sol]). Let Σ1,Σ2 be share systems and l−1 , l−2 their disequation lists. Then:

1. If l−2 is empty and GSAT(Σ1) = >, then:

Σ1 ` Σ2 iff Σ+
1 ` Σ+

2 .

2. If l−2 = [η1, . . . , ηn] for n > 0 and l−1 is empty, then:

Σ1 ` Σ2 iff Σ1 ` Σηi
2 for i = 1 . . . n.

Chapter 5. Complete certified procedures for tree share constraints 143

3. If l−1 = [η1, . . . , ηn] and l−2 = [η′1, . . . , η′m] for n,m > 0. then:

Σ1 ` Σ2 iff ∀η′i ∈ l−2 . ∃ηj ∈ l
−
1 . Σηj

1 ` Ση′i
2 .

/

Proof. Similar to the proof of Lemma 5.5.5.

1. Only ⇒ is nontrivial. As l−2 is empty, we have Σ+
2 = Σ2. Let ρ |= Σ1, we will

show that ρ |= Σ2. As GSAT(Σ1) = >, we can find a context ρ′ s.t. ρ′ |= Σ1. Let

n
def= max (|ρ|, |ρ′|, |Σ1|, |Σ2|) + 1 (i.e. we need to make sure n is sufficiently big to

apply the average function), we combine two contexts ρ, ρ′ into a single context ρn

using the averaging function On, i.e.:

ρn = ρ 5n ρ
′.

Then ρn is a solution of Σ1. From the premise Σ1 ` Σ2, we derive that ρn |= Σ2 = Σ+
2 .

As bρcn = (ρ, ρ′) and n > |Σ2|, both ρ and ρ′ are solutions of Σ2 by Corollary 5.5.1.

Thus the result follows.

2. As l-2 = [η1, · · · , ηn], we have S(Σ2) = ⋂n
i=1 S(Σηi

2). The entailment Σ1 ` Σ2 is

equivalent to the set inclusion S(Σ1) ⊆ S(Σ2). Similarly, Σ1 ` Σηi
2 is equivalent to

S(Σ1) ⊆ S(Σηi
2) for i = 1 . . . n. On the other hand, we have the following fact from

basic set theory:

A ⊆
n⋂
i=1

Bi iff A ⊆ Bi for i = 1 . . . n.

Hence the result trivially follows from these observations.

3. Let Aj
def= S(Σηj

1) for j = 1 . . . n and Bi
def= S(Ση′i

2) for i = 1 . . .m. The entailment

Σ1 ` Σ2 is equivalent to:
n⋂
j=1

Aj ⊆
m⋂
i=1

Bi.

Chapter 5. Complete certified procedures for tree share constraints 144

By simple set theory argument, the above set inclusion is equivalent to:

n⋂
j=1

Aj ⊆ Bi for i = 1 . . .m.

Fix a value for i. If there exists some Aj s.t. Aj ⊆ Bi then we are done. This also

means that Σηj
1 ` Ση′i

2 . Otherwise, assume Aj 6⊆ Bi for all j = 1 . . . n, it suffices to

show that ⋂nj=1Aj 6⊆ Bi. Let ρj ∈ Aj\Bi, i.e., ρj is a solution of Aj = S(Σηj
1) but it

is not a solution of Bi = S(Ση′i
2). We define the sequence {ρ′k} as follows:

ρ′1
def= ρ1, ρ

′
k+1

def= ρ′k 5hk+1 ρk+1.

where hk+1 = max (|ρ′k|, |ρk+1|, |Σ1|, |Σ2|) + 1. By Lemma 5.5.3, we deduce that ρ′n
is a solution of Aj for j = 1 . . . n and it is not a solution of Bi. It follows that

ρ′n ∈
⋂n
j=1Aj\Bi. Hence

⋂n
j=1Aj 6⊆ Bi is a contradiction. Thus the result follows.

We are now ready to justify the soundness of GIMP (Algorithm 7) in Theorem 5.4.1:

Theorem 5.4.1 ([Sol]). Let Σ1,Σ2 be share systems then Σ1 ` Σ2 iff GIMP(Σ1,Σ2) = >.

Proof. We first activate several necessary conditions GSAT(Σ1) (line 2) and Σ+
1 ` Σ+

2 (line

3). Then the subsequent flow of GIMP follows from Lemma 5.5.5 which depends on the

length of two disequation lists l−1 and l−2 . Here our main solver calls the two specialized

solvers ZIMP and SIMP (line 7 and 10) whose soundness is verified in Lemma 5.5.7. As a

result, the soundness of GIMP is justified.

5.6 Performance-enhancing components

The architecture of our tool was given in §5.2.1 (Figure 5.1). The key DECOMPOSE,

TRANSFORM and INTERPRET components were discussed in §5.2.1, §5.3.1, and §5.4.1.

Here we give details on the PARTITION, BOUND, and SIMPLIFY modules. Their principal

goal is to shrink the search space and uncover contradictions, although they each do so

Chapter 5. Complete certified procedures for tree share constraints 145

in a very different way. Although in practice they can substantially improve performance,

none of these components is a complete solver. The key ideas in these components were

developed previously [HG12, LGH12], although not all together. We have made a number

of incremental enhancements, but our major contribution for these is components is the

development of high-performing general-purpose certified implementations.

PARTITION. The goal of this module is to separate a constraint system into independent

subsystems. Two systems are independent of each other if they do not share any common

variable (with existential variables bound locally).

The partition function is implemented generically: in other words it does not assume very

much about the underlying domain. To build the module, we must specify types of variables

V , equations E, and contexts C. We also provide a parameterized function σ : E → L(V)

that extracts a list of variables from an equation, an overriding function written ρ′[ρ⇐ l],

and an evaluation relation written c |= e. The soundness proof requires two axioms that

relate these inputs as follows:

ρ |= e σ(e) ∩ l = ∅
ρ[ρ′ ⇐ l] |= e

disjointness
ρ |= e σ(e) ⊂ l
ρ′[ρ⇐ l] |= e

inclusion

Disjointness and inclusion jointly specify that satisfaction of an equation only depends on

the variables it contains: overriding variables not in the equation does not matter; and from

any context, if we overload all of the variables that are in an equation then we can ignore

the original context.

It is simple to use PARTITION for GSAT, but to handle GIMP is harder. We can “tag”

equations and variables as coming from the antecedent or consequent before partitioning

and then use these tags to separate the resulting partitioned systems into antecedents and

consequents afterwards.

The implementation of PARTITION is nontrivial in purely functional languages like Coq.

One reason is that we need a purely functional union-find data structure, which we obtain via

the impure-to-pure transformation of Pippenger [Pip96] applied to the canonical imperative

algorithm [CLRS09]. In other words, we substitute red-black trees for memory (mapping

Chapter 5. Complete certified procedures for tree share constraints 146

“addresses” to “cell contents”) and pay a logarithmic access penalty, yielding an O
(
n · log(n) ·

α(n)
)
algorithm.

The termination of “find” turns out to be subtle. Parent pointers are represented as cells

that “point to” other cells; however, those parent cells can be anywhere in the red-black

tree (e.g. item 5 can be the parent of item 10, or the other way around.) Accordingly, an

important invariant of the structure is that “nonlocal links” form acyclic chains, which is

the key termination argument.

Given union-find, the algorithm is straightforward: each variable is put into a singleton set,

and then while processing each equation we union the corresponding sets. Lastly, we extract

the sets and filter the equations into components.

BOUND. The bound module uses order theory to prune the space. Each variable v is given

an initial bound ◦ ⊆ v ⊆ •. The bounder then tries to narrow these bounds by forward and

backward propagation. For example, if τ1 ⊆ v1 ⊆ •, τ2 ⊆ v2 ⊆ •, and ◦ ⊆ v3 ⊆ •, then if

v1 ⊕ v2 = v3 is an clause we can conclude that v3’s lower bound can be increased from ◦ to

τ1 t τ2 (where t computes the union in an underlying lattice on trees). In some cases, the

bounds for a variable can be narrowed all the way to a point, in which case we can substitute

the variable away. In other cases we can find a contradiction (when the upper bound goes

below the lower bound), allowing us to terminate the procedure.

The bound algorithm is an updated version of the incomplete solver developed by Hobor

et al. [HG12]. Although our main contribution here is the certified implementation, we

managed to tighten the bounds in certain cases.

SIMPLIFY. The simplify module is a combination of a substitution engine and several

effective heuristics for reducing the overall difficulty via calculation. For example, from

v ⊕ τ1 = τ2, where τi are constants, we can compute an exact value for v using an inverse of

⊕: v = τ2 	 τ1. SIMPLIFY also hunts for contradictions: for example, from v ⊕ v = • we

can reach a contradiction due to the “disjointness” axiom from Figure 2.3. The core idea of

simplifier was contained in the work of Le et al. [LGH12], so our main contribution here is

Chapter 5. Complete certified procedures for tree share constraints 147

our certified implementation.

5.7 Experimental evaluation

Our procedures are implemented and certified in Coq. Users who wish to use our code

outside of Coq can use Coq’s extraction feature to generate code in OCaml, although at

present a small bug in Coq 8.4pl5’s extraction mechanism requires a small human edit to

the generated code.

We benchmarked our code in three ways using an Intel i7 with 8GB RAM. First, we used

a suite of 102 standalone test cases developed for our uncertified solvers in Chapter 4 (53

SAT and 49 IMP) and all metatheoretic properties described in Figure 2.3. These tests

cover a variety of tricky cases such as large number of variables, deep tree constants, etc.

Even running as interpreted Gallina code within Coq, the time is extremely encouraging at

17 seconds to check all 111 tests. After we port to Coq 8.5 we can use the native_compute

tactic to increase performance.

Second, we compiled the extracted OCaml code with ocamlopt. The total running time to

test all 111 previous tests is 0.02 seconds, despite our naïve SMT solver; our previous tool

took 1.4 seconds. Since our SMT solver is a separate module, it can be replaced with a more

robust external solver such as Z3 [dMB08] if performance bottlenecks in that spot in the

future.

Finally, we incorporated our solver into the HIP/SLEEK verification toolset, which was

previously using the uncertified solvers SAT and IMP in Chapter 4. We did so by writing a

short (approximately 150 line) “shim” that translated the format used by the previous tool

into the format expected by the new tool.

We then benchmarked our tool against a suite of 23 benchmark programs as shown in Table 5.1.

15 of those programs were developed by Gherghina [Ghe12] and utilize a concurrent separation

logic for pthreads-style barriers that exercise share provers extensively. Another 7 tests

were developed for the HipCAP project [CLQ17], which extended HIP/SLEEK to reason

in a Concurrent Abstract Predicate [DYDG+10] style. Finally, we wrote a simple fork/join

Chapter 5. Complete certified procedures for tree share constraints 148

File LOC # calls # wrong Uncertified tool Certified tool

MISD_ex1_th1.ss 36 294 48 2.21 2.37

MISD_ex1_th2.ss 36 495 67 4.36 4.48

MISD_ex1_th3.ss 36 726 94 6.95 6.58

MISD_ex1_th4.ss 36 1,003 123 9.09 8.36

MISD_ex1_th5.ss 36 1,320 134 15.74 12.38

MISD_ex2_th1.ss 47 837 107 16.77 18.97

MISD_ex2_th2.ss 52 1,044 157 29.34 26.02

MISD_ex2_th3.ss 87 1,841 260 69.09 64.21

MISD_ex2_th4.ss 105 3,023 374 194.17 194.64

PIPE_ex1_th2.ss 35 283 7 2.49 2.78

PIPE_ex1_th3.ss 44 467 12 4.92 4.65

PIPE_ex1_th4.ss 56 678 15 7.00 7.53

PIPE_ex1_th5.ss 66 931 18 9.67 9.37

SIMD_ex1_v2_th1.ss 74 1,167 281 18.46 17.64

SIMD_ex1_v2_th2.ss 95 2,029 392 63.83 53.50

cdl-ex1a-fm.ss 49 7 0 0.10 0.08

cdl-ex2-fm.ss 50 9 0 0.12 0.09

cdl-ex3-fm.ss 51 10 0 0.11 0.12

cdl-ex4-race.ss 50 5 0 0.09 0.09

cdl-ex4a-race.ss 50 9 0 0.10 0.08

cdl-ex5-deadlock.ss 42 5 0 0.10 0.10

cdl-ex5a-deadlock.ss 42 9 0 0.08 0.08

ex-fork-join.ss 25 47 22 0.19 0.16

total 10,252 534 455.01 434.30

Table 5.1: Evaluation of our procedures using HIP/SLEEK

Chapter 5. Complete certified procedures for tree share constraints 149

program for our initial testing.

The results are rather interesting! The left column gives the input file name to HIP/SLEEK

and the second the number of lines in that file. The third column is the total number of

calls into the solver (both GSAT and GIMP). The fourth column is the number of

times the previous solvers answered the query incorrectly. The fifth column gives

the time (in seconds) spent by our uncertified solvers in Chapter 4 (SAT and IMP) and the

sixth column gives the time spent by our new certified solver. HIP/SLEEK was benchmarked

on a more powerful machine with 16 cores and 64GB RAM.

The uncertified solver got approximately 5.2% of the queries wrong! In our

subsequent investigation, we discovered a number of bugs in the original solver: code rot (due

to a change in the correct mechanism to call the SMT backend), improper error handling

and signaling, general coding errors, and the incorrect treatment of nonzero variables. We

also discovered bugs in HIP/SLEEK itself, which did not always use the result of the solver

in the correct way; this is why the regression tests were passing even though the solver

was reporting the incorrect answer. Our discovery of bugs on this scale, despite the large

benchmarks developed for our uncertified solvers and by Gherghina [Ghe12], illustrates the

value of developing certified decision procedures.

Our timing results are reasonable: despite our naïve SMT solver backend and the difficulties

in writing the algorithms in a purely functional style, our tool is approximately 4.6% faster

than the time spent in the uncertified solvers.

5.8 Development file list

Table 5.2 contains a file-by-file summary of our development. Overall we have approximately

38.6k lines of code. These include roughly 5k lines of modifications to the Mechanized

Semantic Library [ADH09], which contained the original mechanized definitions of tree

shares by Dockins et al. [DHA09]. We have significantly expanded the theory to account e.g.

for the operations of rounding and averaging explained and formalized in §5.5. We did some

of these MSL modifications to justify our previous decision procedure in Chapter 4. The rest

Chapter 5. Complete certified procedures for tree share constraints 150

folder file LOC

/msl/(2 modified files) ≈ 5,000

boolean_alg.v ≈ 500

tree_shares.v ≈ 4,500

/rbt/ (3 files) 5,259

/uf/ (4 files) 3,881

base.v 268

UF_interface.v 935

UF_base.v 2,258

UF_implementation.v 420

/part/ (4 files) 2,729

base.v 268

partition_base.v 434

partition_ibase.v 1,094

partition_implementation.v 771

/ (20 files) 21,740

base.v 268

share_dec_base.v 524

base_properties 786

share_equation_system.v 1,133

share_dec_interface.v 536

bool_to_formula.v 643

fbool_solver.v 1,497

bool_solver.v 417

share_correctness_base.v 1,594

share_correctness.v 447

share_decompose_base.v 2,265

share_decompose.v 670

share_to_bool.v 637

borders.v 464

bound_map.v 228

share_bounder.v 2,510

partition_modules.v 3,908

share_simplifier.v 2,337

share_solver.v 792

share_solver_with_partition.v 84

Total (31 files) ≈ 38,609

Table 5.2: Our development

Chapter 5. Complete certified procedures for tree share constraints 151

of MSL adds about another 30k lines of code, but we do not include these lines in our table

as we only use a small portion. The directory /rbt/ contains a general and well-performing

red-black tree implementation [App11a].

All of the other files are new for the present work. The /uf/ directory uses the red-black

trees to build our purely functional union-find implementation. The /part/ directory uses

union find to build our generic partition module.

The bulk of the files are in the main directory /. We define share equation system in

share_equation_system.v and state the formal correctness property of our procedures

in share_dec_interface.v. The INTERPRET component is in bool_to_formula.v and

fbool_solver.v contains the SMT solver; bool_solver.v chains these together.

The key theoretical proofs for domain reduction are in the files associated with §5.5. The

code for the DECOMPOSE is in share_decompose_base.v, which defines the function φ,

and share_decompose.v, which defines the Split function. The code of TRANSFORM is

in share_to_bool.v; its correctness proof uses all §5.5 files. Lemmas 5.5.5 and 5.5.8 are

proven in share_correctness_base.v and share_correctness.v.

The BOUND module is in borders.v, bound_map.v, and share_bounder.v. The PARTITION

module is in partition_modules.v, which uses our generic partitioner. The SIMPLIFY

module is in share_simplifier.v.

The main procedures (GSAT and GIMP) and correctness proofs are in share_solver.v.

An optimized version in which we use the module PARTITION to divide the system into

independent components are implemented in share_solver_with_partition.v.

5.9 Conclusion

We have used tree shares to model permissions for integration into program logics. We

proposed two decision procedures for tree shares and proved their correctness in Coq. The

two algorithms perform well in practice and have been integrated into a sizable verification

toolset. In subsequent chapters, we will examine the theory further to support general logical

Chapter 5. Complete certified procedures for tree share constraints 152

formulae (including arbitrary quantifier use) and perhaps monadic 2nd order logic. Also,

we will investigate the decidability of bowtie ./, which is a kind of multiplicative operation

between shares.

Chapter 6
Decidability and complexity of tree shares

“Life is about accepting the challenges

along the way, choosing to keep moving

forward, and savoring the journey.”

Roy T. Bennett, The Light in the Heart.

In previous chapters, we discussed about decision procedures over the tree share structure

〈T,⊕〉. Our decision procedures are capable of solving a subclass of first-order tree formulas,

i.e., existential and universal formulas. To an extent, these formulas are sufficiently expressive

for practical purposes as required by verification tools that support tree shares such as

HIP/SLEEK [NDQC07] and VST [App11b]. As a result, it is essential to build decision

procedures to handle such constraints. As ⊕ is constructed from t and u, we are interested

in developing decision procedure over the general structure 〈T,t,u, ·̄〉. We discovered that

there is a strong connection between the above structure and Boolean Algebra: this structure

is a model for Countable Atomless Algebra. We then are able to derive the complexity and

decidability for the structure 〈T,t,u, ·̄〉 from these established connection.

The structure of this chapter is divided into the following sections∗:

1. In §6.1, we mention all the necessary backgrounds and key results about Boolean

Algebra.

2. In §6.2, we prove that the structure 〈T,t,u, ·̄〉 is a model for Countable Atomless

Boolean Algebra and derive a lower bound STA(∗, 2nO(1)
, n) for its first-order theory,

∗The materials in this chapter are taken from two papers “Decidability and Complexity of Tree Shares
Formulas” [LHL16] and “Complexity Analysis of Tree Share Operations” [LHL17], joint work with my
supervisor Aquinas Hobor and my mentor Anthony W. Lin.

153

Chapter 6. Decidability and complexity of tree shares 154

i.e., the class of alternating Turing machines that use 2nO(1) times and n alternations.

3. In §6.3, we derive the upper bound for first-order theory of 〈T,t,u, ·̄〉 which is

STA(∗, 2nO(1)
, n). Hence, the first-order theory of 〈T,t,u, ·̄〉 is STA(∗, 2nO(1)

, n)-complete.

4. In §6.4, we draw our conclusion.

6.1 Preliminaries

6.1.1 Language and structure

A signature is a triple σ = (F ,P, arity) of function symbols F = {f1, . . . , fn}, predicate

symbols P = {P1, . . . , Pm} and the arity function arity : F ∪P 7→ N that specifies the number

of arguments for functions and predicates in F ∪ P. A variable instance v is bound if it is

within the scope of some quantifier ∀v or ∃v, otherwise v is free. A σ-formula Φ is a sentence

if it does not contain any free variables. A σ-theory is simply a set of first-order σ-sentences.

A σ-theory T is complete if for each σ-sentence Φ, either Φ or ¬Φ is in T . We say T decidable

if membership testing of σ-sentences in T is decidable, i.e., there exists a halted Turing

machine that can decide whether a given formula is in T .

We recall the formula hierarchy as follows. Let Σ1 be the set of existential formulas of

the form ∃v1 . . . ∃vn. Φ and Π1 the set of universal formulas ∀v1 . . . ∀vn. Φ in which Φ is

quantifier-free. Generally, Σi+1 is the set of formulas ∃v1 . . . ∃vn.Φ for Φ ∈ Πi and Πi+1 is

the set of formulas ∀v1 . . . ∀vn.Φ for Φ ∈ Σi.

A σ-structure is an interpretation of the symbols in σ. Formally, a σ-structure is the triple

A = 〈U ,FA,PA〉 in which U is the universe of discourse while FA and PA ⊆ Uk contain

functions and predicates whose symbols are from the signature σ. The structure A satisfies

a σ-formula Φ, denoted by A |= Φ, if Φ is true under the interpretation of A (please refer

to §2.1.1 for a formal definition). We let Th(A) denote the first-order theory of A, i.e., the

set of σ-sentences that are satisfied by A. Two σ-structures A1 and A2 are elementarily

equivalent if they satisfy the same set of first-order σ-sentences, i.e., Th(A1) = Th(A2).

Furthermore, let A = {Ψ1,Ψ2, . . .} be a set of σ-sentences called axioms then a structure A

Chapter 6. Decidability and complexity of tree shares 155

is a model of A if A satisfies all axioms in A. Also, the first-order theory of A, denoted by

Th(A), is the set of all sentences that are satisfied by all models of A.

If the signature σ is clear from the context or not important, we will usually omit the prefix

σ in the corresponding names. For convenience, we will usually abuse a function (predicate)

with its symbol, i.e., f represents both the function symbol in σ and the function fA in A.

As a result, we will usually mention structures without introducing their signatures as such

signatures can be derived from the structures themselves. For the purpose of this thesis, the

universe of the structure is a part of the signature, i.e., it is also the set of constant

symbols in the signature. In addition, we will introduce a structure as A = 〈U ,X1, . . . ,Xn〉

in which A is the name of the structure, U is its universe and Xi is either a function or

predicate whose arity is implicitly known. Also, we reuse some notations in different domains

as long as there is no confusion.

6.1.2 Computational complexity

First, we recall the definition of Turing machine, an abstract vehicle to measure the de-

cidability and complexity (e.g. [Koz06, Pap03]). Simply speaking, a Turing machine M is

an infinite tape consists of writeable cells and its main mechanism is to read an input and

produce an output. Initially, the input is written in the middle of the tape and is surrounded

by infinitely many blank cells at both ends. There is a head pointer to indicate the current

read cell and it first points to the first cell of the input. Each time the machine starts to

read the value of the cell then chooses either to move the head to the left or right. After a

while, the machine may declare “finished” and whatever written on the tape is considered

the output. Formally:

Definition 6.1.1. A deterministic Turing machine is the 7-tuple M = 〈Q,Σ,Γ, δ, q0, b, F 〉

in which:

1. Q is the set of states.

2. Σ is the set of input symbols, i.e. the alphabet describes the input.

3. Γ is the set of of tape symbols, i.e., the alphabet describes the written output (together

Chapter 6. Decidability and complexity of tree shares 156

with Σ).

4. δ : Q×Γ 7→ Q×Γ×{L,R} is the transition function that helps mechanize the behavior

of the head. In short, δ takes in a pair of the current state and symbol pointed to the

head and then returns the next state together with the written symbol and the action

L or R (i.e. move the head to left or right).

5. q0 ∈ Q is the initial state.

6. b is the special ‘blank symbol’ that helps separate the written and unwritten part.

7. F ⊆ Q is the set of accepting states.

Furthermore, if we change the transition function δ to relation (Q×Γ)×(Q×Γ×{L,R}) then

we obtain the definition of non-deterministic Turing machine. The key difference between

nondeterministic and deterministic Turing machines is that the former allows multiple choices

at each step of computation while the latter has at most one choice. Nondeterministic Turing

machines are as powerful as the deterministic version in term of computation as one can

simulate the other and vice-versa. /

Remark. From this basic definition, we can construct other generalized versions of Turing

machine which are as powerful as the original one, e.g.:

1. Idle-head Turing machine: the head has another idle state that allows it remain

stationary.

2. Multi-tape Turing machine: the machine has multiple tapes for different purposes.

Each tape has its own head which moves individually at each step. Also, there is a

special tape that contains the input and a special tape to write the output.

3. One-end Turing machine: We consider a cell to be the boundary. Initially, the input is

placed on the right of the boundary cell and the head is not allowed to trespass to the

left of the boundary cell.

Computation. A Turing configuration helps capture the current image of the Turing tape

that indicates the current state, the location of the head together with the tape content.

Formally, it is defined as a triple (T1, q, T2) in which T1 ∈ (Σ ∪ Γ)∗ is the prefix string of the

Chapter 6. Decidability and complexity of tree shares 157

tape before head, T2 is the suffix string of the tape since the head inclusively, and q is the

current state. A Turing step updates the tape’s content under the effect of transition function.

Particularly, let c1, c2 be configurations. Then a step from c1 to c2, denoted c1
M7−→ c2, is

defined as:

c1 = (W ′a′, q, aW) c2 = (W ′, r, a′a′′W) δ(q, a) = (r, a′′, L)

c1
M7−→ c2

left

c1 = (W ′a′, q, aW) c2 = (W ′a′a′′, r,W) δ(q, a) = (r, a′′, R)

c1
M7−→ c2

right

We say configuration ca leads to cb (or cb is reachable from ca), denoted as ca M∗7−−→ cb, if there

exists a sequence of configurations {ck}n0 such that ca M7−→ c0
M7−→ . . .

M7−→ cn
M7−→ cb. An initial

(accepting) configuration is a configuration with initial (accepting) state. Furthermore, an

accepting Turing computation is a sequence of steps c0
M7−→ c1

M7−→ . . .
M7−→ cn in which c0 and

cn are the initial and accepting configuration respectively. We say M accepts input w iff

there exists an accepting computation c0
M∗7−−→ cn such that c0 = (ε, q0, w). By definition,

nondeterministic Turing machines only need one accepting computation path to accept an

input.

Complexity class and decidability. A complexity class C consists of problems A = (P,Q)

in which P contains the problem instances and Q represents the query over P . For example,

the Boolean satisfiability problem is the pair (P,Q) in which P is the set of quantifier-free

Boolean formulas and Q is the query whether an formula Φ ∈ P is satisfiable. A problem

A is decidable if there exists a halted Turing machine that can answer the query of A

and halts on all inputs. The complexity of problem A (or class C) is then measured and

represented by the (time or space, desirably minimal) complexity of the halted (deterministic

or nondeterministic) Turing machines that answer/decide the query Q. A theory T with

signature σ is decidable if there exists a halted Turing machine that can check whether a

σ-formula is in T . Also, complexity class C1 is subsumed by C2, denoted by C1 ⊆ C2, if all

problems in C1 can be solved by Turing machines that decide problems in C2.

Example 6.1.1. The class NP contains problems decided by nondeterministic polynomial

time Turing machines. On the other hand, PSPACE are problems decided by deterministic

Chapter 6. Decidability and complexity of tree shares 158

polynomial space Turing machines. It is also known that NP ⊆ PSPACE but whether the

inclusion is strict remains unknown. /

Reduction. Let R, C be complexity classes, a problem P is ≤R-hard for C if each problem

in C can be reduced to P by a many-one reduction in R. Similarly, P is ≤R-complete for C if

it is in C and ≤R-hard for C. In addition, we use ≤R-lin to assert linear reduction that is in

R and only changes the problem’s size by a constant factor. In particular, ≤log-lin is linear

log-space reduction.

For example, the most two common reductions are ≤p (deterministic polynomial time) and

≤log (deterministic logarithmic space) reductions. By a well-known complexity result, it

is known that log-space reduction is also polynomial-time reduction but it is not known

whether the inclusion is strict.

If the reduction is in polynomial time, we will usually omit the type of reduction and simply

say P is C-hard or C-complete. Notice that C-hard problems are unnecessary in complexity

class C; otherwise, they are C-complete by definition.

Exponential and elementary complexity. Let the exponent function exp : N2 7→ N be:

exp(n, 0) = n and exp(n, k + 1) = 2exp(n,k).

The complexity class kEXP contains problems which can be decided by a halting deterministic

Turing machines of time complexity exp(cn, k) for input of length n and some constant c.

Similarly, we use kNEXP and kEXSPACE for exponential time complexity of nondeterministic

halted Turing machines and space complexity of deterministic halted Turing machines

respectively. A problem is elementary if it is in kEXP for some k, otherwise it is called

non-elementary.

Alternating Turing machines. Alternating Turing machines (ATM) are generalized from

nondeterministic Turing machines. Informally speaking, an ATM has two disjoint sets of

states, i.e., existential states and universal states. If the machine is currently at one of the

existential states, it only needs one computation path to the accepting state in order to

accept the input. Likewise, a machine in universal states will need all its computation paths

Chapter 6. Decidability and complexity of tree shares 159

lead to accepting states. Formally, an ATM is a tuple 〈Q,Σ,Γ, δ, q0, b, h〉 such that:

1. Q is the set of states.

2. Σ is the input alphabet.

3. Γ is the finite tape alphabet.

4. δ : Q× Γ 7→ P(Q× Γ× {L,R}) is the transition function in which L,R indicate the

movement of the head to the left and right respectively.

5. q0 is the initial state.

6. b is the special blank symbol for tape.

7. h : Q 7→ {∀, ∃, acc, rej} is the state classifier for universal, existential, acceptance and

rejection states.

Let c be a configuration and q be its state. We override the classifier h over c so that it is

either accepting (h(c) = acc) or rejecting (h(c) = rej) by the following rules:

1. If h(q) = acc then h(c) = acc; or if h(q) = rej then h(c) = rej.

2. If h(q) = ∀ (i.e. q is universal state) then c is accepting if all configurations reachable

from c in one step are accepting; and rejecting if some configuration reachable in one

step is rejecting, i.e.:

h(c∀) = acc def= ∀c′. c∀
M7−→ c′ ⇒ h(c′) = acc h(c∀) = rej def= ∃c′. c∀

M7−→ c′∧h(c′) = rej.

3. If h(q) = ∃ (i.e. q is existential state) then c is accepting if there is some configuration

reachable from c in one step that is accepting; and rejecting if all configurations

reachable in one step are rejecting, i.e.:

h(c∃) = acc def= ∃c′. c∃
M7−→ c′∧h(c′) = acc h(c∃) = rej def= ∀c′. c∃

M7−→ c′ ⇒ h(c′) = rej.

The complexity of an ATM is measured via three parameters: time, space and number of

alternations. While time and space are standard, number of alternations are the number

Chapter 6. Decidability and complexity of tree shares 160

Identity : a ∪ 0 = a a ∩ 1 = a (6.1)
Null : a ∪ 1 = 1 a ∩ 0 = 0 (6.2)
Idempotency : a ∪ a = a a ∩ a = a (6.3)
Involution : ¯̄a = a (6.4)
Complementary : a ∪ ā = 1 a ∩ ā = 0 (6.5)
Commutativity : a ∪ b = b ∪ a a ∩ b = b ∩ a (6.6)
Associativity : (a ∪ b) ∪ c = a ∪ (b ∪ c) (a ∩ b) ∩ c = a ∩ (b ∩ c) (6.7)
Distributivity : (a ∩ b) ∪ c = (a ∪ c) ∩ (b ∪ c) (a ∪ b) ∩ c = (a ∩ c) ∪ (b ∩ c) (6.8)

Figure 6.1: Axioms of BA (variables a, b, c are universal)

of times the machine switch from ∀-state to ∃-state or vice-versa. As a result, we let

STA(p(n), t(n), a(n)) denote the class of problems decided by an ATM that uses at most

p(n) space, t(n) time and a(n) alternations for input of length n. If one of the three bound

is not specified, we represent it with ∗. Last but not least, it is well-known that complexity

of ATM is between nondeterministic time and deterministic space:

Proposition 6.1.1 ([CKS81]). Let S(n) be a function such that S(n) ≥ n for n ∈ N then:

NTIME(S(n)) ⊆ STA(∗, S(n), ∗) ⊆ SPACE(S(n)).

where NTIME and SPACE denote the complexity classes for nondeterministic time and

deterministic space respectively. /

6.1.3 Boolean Algebra

The language of Boolean Algebra (BA), e.g. [PH09, Whi61], consists of symbols σBA =

(∩,∪, ·̄, 0, 1) in which ∪ is AND (conjunction), ∩ is OR (disjunction), ·̄ is NOT (negation), 0

is the OR identity and 1 is the AND identity. A σBA-structure is a BA model if it satisfies

the axioms in Figure 6.1.

The simplest BA model contains a single element when 0 and 1 are collapsed into one element.

On the other hand, one of the most popular BA models is the binary BA that contains two

elements, i.e., 0 and 1. If we interpret ∩,∪, ·̄ as set intersection, union and complement

Chapter 6. Decidability and complexity of tree shares 161

respectively while 0 is the empty set and 1 is the power set of some set A then we have the

set BA model.

Atomless BA. We can define an order ≤ from the signature σBA as:

a ≤ b def= a ∩ b = a†.

Lemma 6.1.1. The order ≤ in BA is partial, i.e., it satisfies the following properties:

1. Reflexivity: ∀a. a ≤ a.

2. Anti-symmetry: ∀a, b. a ≤ b→ b ≤ a→ a = b.

3. Transitivity: ∀a, b, c. a ≤ b→ b ≤ b→ a ≤ c.

/

Proof. Reflexivity follows from axiom idempotency. For anti-symmetry, we have a ∩ b = a

and b ∩ a = b. As ∩ is commutative, we infer a = b. For transitivity, let a ∩ b = a and

b∩ c = b then together with associativity, we have a∩ c = (a∩ b)∩ c = a∩ (b∩ c) = a∩ b = a.

Thus a ≤ c.

From the partial order ≤, we can define the strict order < by excluding the equality case:

a < b
def= a ≤ b ∧ b 6≤ a.

We use < to define atomless BA by adding the following axioms into the BA axiom set:

Atomless: ∀a. 0 < a→ ∃b. 0 < b ∧ b < a.

Informally, the axiom says that for any element a different from 0, we can find an element b

between 0 and a exclusively. One atomless BA model is the periodic binary string structure

where each element is an infinite string of the form sω = sss . . . in which s ∈ {0, 1}+ is the

infinite periodic string pattern. In this structure, the constant 0 and 1 are the strings 0ω

†An alternative definition is a ∪ b = b which can be proved to be equivalent from BA axioms.

Chapter 6. Decidability and complexity of tree shares 162

and 1ω. Furthermore, the operators ∩/∪ are pair-wise binary conjunction/disjunction and

·̄ is the component-wise binary complement. For example, let a = (10)ω = 101010 . . . and

b = (100)ω = 100100 . . . then:

1. ā = (10)ω = (01)ω.

2. a ∩ b = (10)ω ∩ (100)ω = (101010)ω ∩ (100100)ω = (101110)ω∗.

To see why this structure satisfies the atomless property, let a = sω be an element different

from 0ω. Then s 6= 0 and we can pick b = (s0n)ω in which n is the length of s. As 0n < s,

we have s0n < ss and thus b = (s0n)ω < (ss)ω = sω = a.

Another atomless BA model is the structure of propositional formulae in which we have a

countably infinite set of variable propositions P = {p1, p2, . . .} and each element is a quantifier-

free formula constructed from P together with logical connectives ∧,∨, complement ¬, and

constants ⊥,>. Here 0 and 1 are interpreted as the the contradiction ⊥ and tautology >.

The interpretations of ∪,∩, ·̄ are ∨,∧,¬ respectively. In this structure, equality should be

understood as propositional equivalence, i.e., a = b iff a↔ b. While it is straightforward to

verify this structure satisfies the BA axioms, we will prove that it also satisfies the atomless

property. Let a be a quantifier-free formula such that a 6= ⊥ then there exists a proposition

pk ∈ P such that pk is not in a. We pick b = a∧pk then b 6= ⊥ as we can pick the proposition

assignment f : P (A) 7→ {>,⊥} such that f(A) = >† and extend it to pk by letting f(pk) = >

so that f(B) = > as well. On the other hand, we have b ≤ a by construction and thus it

remains to show b 6= a, i.e. they are not equivalent. Extend the assignment f over pk but

this time we let f(pk) = ⊥ then f(A) = > while f(B) = ⊥ and the result follows.

Both the structures above are countable atomless BA (CABA), i.e., their domains are

infinitely countable. It turns out that there is only one CABA model up to isomorphism by

the following well-known result:

Proposition 6.1.2 (Forklore e.g. [Hal74]). The first-order theory of atomless BA is complete

and ω-categorical, i.e., any two models are elementarily equivalent and the theory has exactly

∗We need to “unfold” a and b so that their periodic strings have the same length before applying the
binary disjunction pair-wise.

†Because a is not equivalent to ⊥.

Chapter 6. Decidability and complexity of tree shares 163

one countably infinite model up to isomorphism. /

Lastly, we recall some classical complexity results for Boolean Algebras that we will need in

subsequent sections:

Proposition 6.1.3 ([MO96]). Let B be an infinite BA (i.e. its domain is infinite) then the

existential theory of B is ≤log-complete for NP. /

Proposition 6.1.4 ([Koz80]). The first-order theory of atomless BAs is in STA(∗, 2O(n), n).

Furthermore, it is ≤log-complete for STA(∗, 2nO(1)
, n) in which STA(∗, 2O(n), n) is the com-

plexity of an alternating Turing machine that uses 2O(n) time and n alternations∗. /

6.2 Connection to countable atomless Boolean Algebra

In this section, we show that tree shares M = 〈T,u,t, ·̄, ◦, •〉 in §2.2.1 is a model for

Countable Atomless Boolean Algebra (CABA). We recall the partial order v and strict order

@ as:

a1 v a2
def= a1 u a2 = ◦ a1 @ a2

def= a1 v a2 ∧ a2 6v a1.

The structure 〈T,u,t, ·̄, ◦, •〉 is atomless if it satisfies the atomless property:

∀a. ◦ @ a→ ∃a′. ◦ @ a′ @ a.

On the the hand, M is countable if its domain T is countable. Dockins et al. [DHA09]

proved thatM is a BA model and thus it remains to showM is countable and atomless.

First, the atomless property can be derived from properties of tree shares:

Lemma 6.2.1. The BA structureM satisfies the atomless property. /

Proof. Let a be a tree share s.t. ◦ @ a, we will find a1 s.t. ◦ @ a1 @ a. We cheat a little bit

∗This is a simple generalization from the result in the paper that states the theory is ≤log-complete
for STA(∗, 2O(n), n). However, this complexity class is bad for completeness because it is not robust under
log-space reduction as input’s size can increase polynomially.

Chapter 6. Decidability and complexity of tree shares 164

by using the following ./ properties in [DHA09]:

∀b1, b2, b3, a. b1 u b2 = b3 → (a ./ b1) u (a ./ b2) = a ./ b3.

In particular, we choose b1 =
◦ •

, b2 =
• ◦

, b3 = • then b1 t b2 = b3. Also, let

ai = a ./ bi then ◦ @ ai and a1 u a2 = a. On the other hand, by using BA axioms we have

a u a1 = (a1 t a2) u a1 = (a1 t a2) u (a1 t •) = a1 u (a2 t •) = a1 u • = a1 and thus a1 v a.

As a2 6= ◦, we imply a1 @ a. HenceM is atomless.

Example 6.2.1. Let a =
• ◦ •

then

a1 = a ./
◦ •

=

◦ • ◦ ◦ •

and this gives us ◦ @ a1 @ a. /

The proof that T is countable is achieved by enumerating T in the ascending order of tree

height |τ | using the following total strict order ≺.

Lemma 6.2.2. Let |τ | denote the height of τ , we define an order ≺ over tree shares as:

◦ ≺ •
|τ1| < |τ2|
τ1 ≺ τ2

|
τ1 τ ′1

| = |
τ2 τ ′2

| τ1 ≺ τ2

τ1 τ ′1

≺
τ2 τ ′2

|
τ τ1

| = |
τ τ2

| τ1 ≺ τ2

τ τ1
≺
τ τ2

.

Then ≺ is a total strict order over tree shares. /

Proof. The first few elements in the order chain are: ◦ ≺ • ≺
◦ •

≺
• ◦

≺
◦ ◦ •

≺

To see why ≺ is total, we show for any two distinct trees τ1 and τ2, either τ1 ≺ τ2 or τ2 ≺ τ1.

If their heights are different then we can use second rule to decide the order. Otherwise,

assume |τ1| = |τ2| = n and we prove by induction over the height n. The base case n = 0

Chapter 6. Decidability and complexity of tree shares 165

can be determined using the first rule. Otherwise, they differs either in their left subtrees

or right subtrees and thus we can apply the induction hypothesis together with third and

fourth rules to infer the order. Also, notice that the four rules are mutually exclusive of each

others and thus consistent.

Consequently, we are now ready to state the main result of this section:

Theorem 6.2.1. The tree share structureM = 〈T,u,t, ·̄, ◦, •〉 is a CABA model. /

Proof. Follow directly from the fact thatM is BA and Lemmas 6.2.1, 6.2.2.

Using the above result, we obtain the lower bound complexity for first-order theory and

existential theory ofM:

Corollary 6.2.1. The first-order theory of M is ≤log-hard for STA(∗, 2nO(1)
, n). On the

other hand, its existential theory is ≤log-hard for NP. /

Proof. From Prop. 6.1.2, we imply thatM is the unique model for CABA. Thus the lower

bound complexity is direct from Prop. 6.1.3 and 6.1.4.

The two bounds above are unnecessarily upper bounds because formulas inM contain tree

share constants (which are infinitely many) while BA formulas only have two constants 0

and 1. As a result, we will derive the upper bounds for theories ofM in the next section.

6.3 Upper bound for first-order theory of 〈T,u,t, ·̄, ◦, •〉

As mentioned in the previous section, formulae ofM = 〈T,u,t, ·̄, ◦, •〉 contain tree constants

which do not belong to the Boolean Algebra (BA) language. Fortunately, by analyzing

the semantics of 〈T,u,t, ·̄, ◦, •〉, we can transform a tree formula Φ into an equivalent tree

formula Φ′ in polynomial time such that Φ′ contains only • and ◦ as constants. As a result,

we can interpret • as 1 and ◦ as 0 in the BA language and thus Φ′ can be decided by Turing

machine for atomless BAs. More precisely, we will show the following complexity results

ofM:

Theorem 6.3.1. The first-order theory Th(M) is in STA(∗, 2O(n2), n). /

Chapter 6. Decidability and complexity of tree shares 166

Together with Corollary 6.2.1, the following bounds are immediate:

Corollary 6.3.1. The first-order theory of Th(M) is ≤log-complete for STA(∗, 2nO(1)
, n). /

6.3.1 Definitions and notations

Here we introduce several definitions together with their notations that will be used in

subsequent sub-sections. To begin with, we introduce tree shape, which is basically the tree

skeleton without leaves:

Definition 6.3.1. The shape of a tree τ , denoted by 〈τ〉, is obtained by replacing its leaves

with ∗:

〈e〉 def= ∗, e ∈ {•, ◦} 〈
τ1 τ2

〉 def=
〈τ1〉 〈τ2〉

.

We denote the set of tree shapes as S. Let s1, s2 be tree shapes then their combined shape,

denoted by s1 t s2, is defined as∗

∗ t s2
def= s2 s1 t ∗

def= s1
sl1 sr1

t
sl2 sr2

def=

sl1 t sl2 sr1 t sr2

.

Furthermore, we say s1 is included in s2, denoted by s1 v s2, if s2 = s1 t s2. We override

the shape function over tree formulae by combining all tree shapes in the formula, i.e. if

T = {τ1, . . . , τn} is the set of tree constants in Φ then:

〈Φ〉 def= ∗ if T = ∅ and 〈Φ〉 def=
n⊔
i=1
〈τi〉 otherwise.

/

Example 6.3.1. Let τ1 =
• ◦ •

, τ2 =
• ◦ ◦

then 〈τ1〉 =
∗ ∗ ∗

and 〈τ2〉 =
∗ ∗ ∗

.

Also:

〈τ1〉 t 〈τ2〉 =
∗ ∗ ∗

t
∗ ∗ ∗

=

∗ ∗ ∗ ∗

.

∗Note that shapes are not folded into any canonical form (if they were then the only one would be ∗).

Chapter 6. Decidability and complexity of tree shares 167

Let Φ def= ∃x.
• ◦ •

u
• ◦ ◦

= x then:

〈Φ〉 = 〈τ1〉 t 〈τ2〉 =

∗ ∗ ∗ ∗

.

/

Next, we use tree shape as the unit to measure the size of trees, from which we will use to

compute precise size for tree formulae:

Definition 6.3.2. The size of a tree shape s, denoted by ‖s‖, is the number of its leaves:

‖ ∗ ‖ def= 1 ‖
s1 s2

‖ def= ‖s1‖+ ‖s2‖.

Meanwhile, we override the size function over trees as the number of its leaves∗:

‖ • ‖ = ‖ ◦ ‖ def= 1 ‖
τ1 τ2

‖ def= ‖τ1‖+ ‖τ2‖.

We override the size function over formulae recursively as follow†:

‖v‖ def= 1 ‖τ1 = τ2‖
def= ‖τ1‖+ ‖τ2‖

‖Φ‖ = ‖¬Φ‖ = ‖Qv. Φ‖ def= ‖Φ‖+ 1, Q ∈ {∀, ∃}

‖τ1?τ2 = τ3‖
def= ‖τ1‖+‖τ2‖+‖τ3‖, ? ∈ {t,u} ‖Φ1?Φ2‖

def= ‖Φ1‖+‖Φ2‖+1, ? ∈ {∧,∨,→}.

/

∗We skip internal nodes as they serve no purpose for the computation and there are only linearly n− 1 of
them in a tree with n leaves.

†Note that the size of a tree ‖τ‖ is not the same as the height of a tree |τ |. Also, ‖τ‖ is not the
exact number of bits to represent τ but rather some linear approximation which will not change the overall
complexity.

Chapter 6. Decidability and complexity of tree shares 168

Example 6.3.2. We have ‖
• ◦ •

‖ = ‖
∗ ∗ ∗

‖ = 3 and ‖∀x∃y. ȳ t
• ◦

= x‖ = 7. /

Lastly, the height of a formula Φ is defined to be the height of the highest trees in Φ:

Definition 6.3.3. Let |τ | be the height of tree τ , starting from zero. We override the height

of tree formula Φ as |Φ| such that |Φ| def= 0 if Φ has no constants. Otherwise, let τ1, . . . , τn

be tree constants in Φ then |Φ| def= max (|τi| | i = 1 . . . n). /

Example 6.3.3. |
• ◦ •

| = 2 and |∀x∃y. x t y =
• ◦

| = 1. /

6.3.2 Decision procedure for flattening tree formulas

We propose a decision procedure in Algorithm 9 to transform a tree formula into an equivalent

formula of height zero. The heart of our transformation is the function Flatten which

takes a tree formula Φ as input and computes an equivalent tree formula Φ′ such that Φ′

only has • and ◦ as constants. Hence the complexity of CABA in Prop. 6.1.3 and 6.1.4

can be applied to Φ′. Our key function calls the subroutine Shape_decompose that helps

decompose a single variable or tree constant. In short, the input of Shape_decompose is

a pair of tree τ (or a variable v) and a shape s; whereas the output is a list of subtrees (or

copies of v with additional suffix) computed from the decomposition of τ (or v) according to

the shape s. Here concat(l1, l2,) concatenates two lists l1 and l2.

Example 6.3.4. Let τ =
• ◦ •

and s =
∗ ∗ ∗

then:

Shape_decompose(τ, s) = [•, •,
◦ •

] and Shape_decompose(v, s) = [v00, v01, v1].

/We now explain in detail how to decompose a formula Φ of size n = ‖Φ‖ using the procedure

Flatten. First on line 4, we compute the formula shape s = 〈Φ〉 by collectively combining

all the tree shapes in Φ. Next between lines 5-9, for each atomic sub-formula t1 = t2

or t1 ? t2 = t3 where ? ∈ {t,u}, we replace it with the conjunction ∧‖s‖
i=1 t

j
1 = tj2 or∧‖s‖

i=1 t
j
1 ? t

j
2 = tj3 in which [t1i , . . . , t

‖s‖
i] = Shape_decompose(ti, s) is the decomposition list

Chapter 6. Decidability and complexity of tree shares 169

Algorithm 9 Flatten a formula into an equivalent formula of height zero
1: function Flatten(Φ)
Require: Φ is a sentence
Ensure: Return an equivalent sentence Φ′ s.t. ◦ and • are the only constants.
2: if |Φ| = 0 then return Φ
3: else
4: s← 〈Φ〉
5: for each atomic sub-formula Ψ : t1 = t2 or t1 ? t2 = t3, ? ∈ {t,u} in Φ do
6: [t1i , . . . t

‖s‖
i]← Shape_decompose(ti, s)

7: Ψ′ ← ∧‖s‖
j=1 Ψj where Ψj ← tj1 = tj2 or tj1 ? t

j
2 = tj3

8: Φ← replace Ψ with Ψ′
9: end for

10: for each quantifier Qv in Φ do
11: [v1, . . . , vn]← Shape_decompose(v, s)
12: Φ← replace Qv in Φ with Qv1 . . . Qvn
13: end for
14: return Φ
15: end if
16: end function
17:
18: function Shape_decompose(t, s)
Require: t is either a variable or a tree constant and s is a shape
Ensure: Return a list of subtrees of t by decomposing t according to shape s
19: if s = ∗ then return [t]
20: else let s =

s1 s2
in

21: if t is a variable (v or v̄) then
22: return concat(Shape_decompose(t0, s1),Shape_decompose(t1, s2))
23: else if t is • or ◦ then
24: return concat(Shape_decompose(t, s1),Shape_decompose(t, s2))
25: else let t =

t1 t2
in

26: return concat(Shape_decompose(t1, s1),Shape_decompose(t2, s2))
27: end if
28: end if
29: end function

Chapter 6. Decidability and complexity of tree shares 170

of ti using subroutine Shape_decompose. On lines 10− 13, we replace quantifier variables

with their corresponding decomposed counterparts and return the modified formula as result.

Example 6.3.5. Let Φ def= ∀a∃b. a t b =
• • ◦

∨ ¬(a =
• ◦ ◦

). Then:

〈Φ〉 =
∗ ∗ ∗

t
∗ ∗ ∗

=

∗ ∗ ∗ ∗

.

We decompose each variables and constants in Φ as:

Shape_decompose(a, 〈Φ〉) = [a00, a01, a10, a11].

Shape_decompose(b, 〈Φ〉) = [b00, b01, b10, b11].

Shape_decompose(
• • ◦

, 〈Φ〉) = [•, •, •, ◦].

Shape_decompose(
• ◦ ◦

, 〈Φ〉) = [•, ◦, ◦, ◦].

There are two atomic sub-formulas, Ψ1 : a t b =
• • ◦

and Ψ2 : a =
• ◦ ◦

. Thus:

Ψ′1 = a00 t b00 = • ∧ a01 t b01 = • ∧ a10 t b10 = • ∧ a11 t b11 = ◦.

Ψ′2 = a00 = • ∧ a01 = ◦ ∧ a10 = ◦ ∧ a11 = ◦.

As a result, the transformed formula of height zero is computed as:

Φ′ = ∀a00∀a01∀a10∀a11∃b00∃b01∃b10∃b11. Ψ′1 ∨ ¬(Ψ′2).

/

Chapter 6. Decidability and complexity of tree shares 171

6.3.3 Analyzing the upper bound complexity

It remains to analyse the complexity of Flatten itself in Algorithm 9. In particular, given

a formula Φ of size n, it suffices to show that Flatten has time complexity O(n2) while

preserves the number of alternations so that the transformed formula Φ′ has size O(n2) with

the same quantifier alternations. Before proving the main result, we will provide several

intermediate lemmas. First, we show that the size of the combined shape is limited by the

sum of individual sizes:

Lemma 6.3.1. Let s1, . . . , sn be tree shapes then the size of their combined shape is at

most the sum of their sizes:

1. ‖s1 t s2‖ ≤ ‖s1‖+ ‖s2‖.

2. ‖⊔ni=1 si‖ ≤
∑n
i=1 ‖si‖.

/

Proof. 1. We prove by structural induction over s1. For the base case s1 = ∗, we have:

‖ ∗ t s2‖ = ‖s2‖ < 1 + ‖s2‖ = ‖ ∗ ‖+ ‖s2‖.

On the other hand, if s2 = ∗ then the result also follows by symmetric argument. Thus we

consider the case s1 =
sl1 sr1

and s2 =
sl2 sr2

. Then by our induction hypothesis:

‖
sl1 sr1

t
sl2 sr2

‖ = ‖

sl1 t sl2 sr1 t sr2

‖ = ‖sl1 t sl2‖+ ‖sr1 t sr2‖

≤ ‖sl1‖+ ‖sr1‖+ ‖sl2‖+ ‖sr2‖ = ‖
sl1 sr1

‖+ ‖
sl2 sr2

‖.

2. We prove by induction over n. The base case n = 1 is trivial. Assume it holds for n = k.

Consider the case n = k + 1 then by Prop. 1:

‖
k+1⊔
i=1

si‖ = ‖
k⊔
i=1

si t sk+1‖ ≤ ‖
k⊔
i=1

si‖+ ‖sk+1‖.

Chapter 6. Decidability and complexity of tree shares 172

By our induction hypothesis, we have ‖⊔ki=1 si‖ ≤
∑k
i=1 ‖si‖ and thus the result follows.

We generalize the above result to obtain the upper bound for tree formulae:

Lemma 6.3.2. Let Φ be a formula then the size of its shape is at most its size, i.e.:

‖〈Φ〉‖ ≤ ‖Φ‖.

/

Proof. If Φ does not contain any constant then ‖〈Φ〉‖ = ‖ ∗ ‖ = 1 and thus the inequality

trivially holds given the fact that ‖Φ‖ ≥ 2. Otherwise, let T = {τ1, . . . , τn} be the set of tree

constants in Φ then by Lemma 6.3.1, we have:

‖〈Φ〉‖ = ‖
n⊔
i=1
〈τi〉‖ ≤

n∑
i=1
‖〈τi〉‖ ≤ ‖Φ‖.

in which the second inequality follows from the fact that tree constants are parts of the

formula. Thus this completes the proof.

We recall that the co-domain of Shape_decompose is the n-dimensional list in Tn. Accord-

ingly, we extend the modelM into the n-dimensional modelMn = 〈Tn,tn,un, ·̄n〉 in which

tn,un, ·̄n are defined by applying t,u, ·̄ component-wise. It is straightforward to verify

thatMn is also a CABA. Thus by Proposition 6.1.2 about the uniqueness of isomorphism,

two CABA modelsM andMn are isomorphic. Additionally, we can construct an effective

isomorphism between them using the procedure Shape_decompose:

Lemma 6.3.3. For a shape s such that ‖s‖ = n, the function

Shape_decompose(_, s) def= λτ. Shape_decompose(τ, s).

is an isomorphism fromM toMn. /

Proof. For convenience, we use the shortcut SD instead of Shape_decompose. Intuitively,

SD(τ, s) destructs the tree τ into sub-trees according to the shape s. As Boolean-like operators

t,u, ·̄ are defined locally leaf-wise, these operators are still correct for the corresponding

Chapter 6. Decidability and complexity of tree shares 173

subtrees. For example, assume SD(τi, s) = [τ1
i , . . . , τ

m
i] for i = 1, 2, 3 then:

τ1 t τ2 = τ3 iff
m∧
i=1

τ i1 t τ i2 = τ i3 iff SD(τ1, s) t SD(τ2, s) = SD(τ3, s).

Thus the result follows.

Since the result list of l = Shape_decompose(τ, s) contains subtrees of τ , their heights

are strictly smaller than |τ | if |τ | > 0 and s 6= ∗. Moreover, if we choose s sufficiently large

then l will contain only subtrees of height zero:

Lemma 6.3.4. Let τ be a tree and s a shape such that 〈τ〉 v s then all trees in the output

of Shape_decompose(τ, s) have height zero. /

Proof. By induction on the structure of s. For convenience, we use the shortcut SD

instead of Shape_decompose. The base case s = ∗ is simple as τ ∈ {•, ◦}. Consider

the case s =
sl sr

. If |τ | = 0 then we are done. Otherwise, let τ =
τl τr

. Then

SD(
τl τr

,
sl sr

) = concat(SD(τl, sl),SD(τr, sr)). By our induction hypothesis, both lists

SD(τl, sl) and SD(τr, sr) only have trees of height zero and thus the result follows.

Finally, the soundness of Flatten follows from Lemmas 6.3.2, 6.3.3 and 6.3.4:

Lemma 6.3.5. Let Φ be a tree formula then

1. Φ′ = Flatten(Φ) has height zero and is equivalent to Φ.

2. Furthermore, let n = ‖Φ‖ be the size of Φ then the time complexity of Flatten is

O(n2) and it preserves the number of quantifier alternations in Φ.

/

Proof. Prop. 1 follows from Lemmas 6.3.3 and 6.3.4. For Prop. 2, note that the time

complexity of Flatten only differs by a constant factor compared to the size of Φ′. Also

Chapter 6. Decidability and complexity of tree shares 174

by implementation, Flatten do no increase the number of quantifier alternations. Thus it

remains to prove that the size of Φ′ is O(n2).

Let s = 〈Φ〉 be the shape of Φ and n = ‖s‖ its size. Then for each variable v, SD(v, s) is a

list of n variables. For atomic formula Ψ, Flatten decomposes it into Ψ′ = ∧n
i=1 Ψi such

that ‖Ψi‖ = O(‖Ψ‖) and thus ‖Ψ′‖ = O(Σn
i=1‖Ψi‖) = O(n‖Ψ‖), i.e., their sizes differ by

a factor of O(n). Generally, two formulae Φ and Φ′ also have sizes that differ by a factor

of O(n), i.e., ‖Φ′‖ = O(n‖Φ‖). By Lemma 6.3.2, we have n = ‖〈Φ〉‖ ≤ ‖Φ‖ and hence

‖Φ′‖ = O(‖Φ‖2).

Corollary 6.3.2. The existential theory ofM, i.e. Σ1 ∩ Th(M), is NP-complete. /

Proof. Notice that Flatten does not increase the number of quantifier alternations in the

formula and thus by Prop. 6.1.3, Σ1 ∩ Th(M) is NP-complete.

We are now ready to justify the correctness of Theorem 6.3.1:

Proof of Theorem 6.3.1. Using Lemma 6.3.5, we can transform, in log-space, a tree

formula Φ into an equivalent formula Φ′ of size O(n2) that only contains •, ◦ as constants

and has the same number of quantifier alternations. By Lemma 6.2.1, the formula Φ′ is an

atomless BA formula. By Proposition 6.1.4, a formula of size O(n2) with n alternations can

be decided in STA(∗, 2O(n2), n) and hence the result follows.

6.4 Conclusion

In this chapter, we have demonstrated the decidability and complexity of a first-order theory

M = 〈T,u,t, ·̄, ◦, •〉 over the Boolean logic of tree shares by pinpointing the connection

to countable atomless Boolean algebras. From there, we were able to derive the precise

complexity STA(∗, 2nO(1)
, n) for the first-order theory ofM.

Chapter 7
Fragments of ./ and their complexity

Izzi: ... They planted a seed over his

grave. The seed became a tree. Moses

said his father became a part of that tree.

He grew into the wood, into the bloom.

And when a sparrow ate the tree’s fruit,

his father flew with the birds. He said...

death was his father’s road to awe.

That’s what he called it. The road to

awe. Now, I’ve been trying to write the

last chapter and I haven’t been able to

get that out of my head!

Tom Creo: Why are you telling me

this?

Izzi: I’m not afraid anymore, Tommy.

The Fountain (2006).

In Chapter 6, we studied the first-order theory complexity of the Boolean-like substructure

〈T,t,u, ·̄〉 in tree shares which is STA(∗, 2nO(1)
, n)-complete. However, this Boolean-like

substructure is not sufficiently expressive to model the scaling permissions in Chapter 3

as we need the operator ./ as well. It turned out that bowtie is more complicated than

join ⊕ because it can increase the tree height. This characteristic is shared with string

concatenation that combines strings to create a longer one. In fact, we will show that the

two operators ./ and string concatenation are similar to each other in the sense that there

exists an isomorphism between them. Consequently, we are able to derive the complexity

175

Chapter 7. Fragments of ./ and their complexity 176

of first-order theory of 〈T, ./〉 which is between NP and PSPACE. As the first-order theory

of string structure is undecidable, it follows that the first-order theory of 〈T, ./〉 and its

extensions are also undecidable. To recover decidability, we need to restrict the form of ./ in

the formulae. In particular, we will show two fragments of ./ with decidable first-order theory

together with their complexity. In the first fragment, we show that if we restricted ./ with

constants either on the left or right then the fragment 〈T, ./τ ,τ ./〉 is first-order decidable

with complexity STA(∗, 2O(n), n)-complete. In the second fragment, we prove that if we

restricted ./ with constants on the right then the combined fragment 〈T, ./τ ,t,u, ·̄〉 is also

first-order decidable. This result is especially important as the scaling permission model in

Chapter 3 requires both ⊕ and ./ with constants on the right hand side (as normal recursive

functions only need to split resources a finite number of times before passing them to other

functions or their children). As a result, it is possible to develop complete decision procedures

to handle scaling permission constraints as we did in Chapter 4 and 5. Interestingly, its

complexity is non-elementary, i.e., it is not bounded above by any k-exponential time class

kEXP mentioned in 6.1.2.

The content of this chapter is structured as follows∗:

1. In §7.1, we provide necessary backgrounds in word equations and automatic structures

that are useful to derive our results.

2. In §7.2, we establish the isomorphism between the bowtie structure 〈T, ./〉 and string

structure with concatenation 〈S, ·〉 and accordingly derive its decidability and complex-

ity.

3. In §7.3, we derive the decidability and complexity of 〈T, ./τ ,τ ./〉.

4. In §7.4, we derive the decidability and complexity of 〈T,t,u, ·̄, ./τ 〉.

5. In §7.5, we draw our conclusion.

∗The materials in this chapter are taken from two papers “Decidability and Complexity of Tree Shares
Formulas” [LHL16] and “Complexity Analysis of Tree Share Operations” [LHL17], joint work with my
supervisor Aquinas Hobor and my mentor Anthony W. Lin.

Chapter 7. Fragments of ./ and their complexity 177

7.1 Preliminaries

Here we introduce the word equations problem and automatic structures (in particular,

tree automatic structures) which we will use to make the connections to bowtie fragments∗.

Informally, word equations are equational constraints about string concatenation whereas a

structure is tree automatic if its domain, functions and predicates can be computed using

tree automata.

7.1.1 Word equation

Let A = {a1, a2, . . .} be a finite set of letters, • be the string concatenation and A∗ be the

Kleene closure of A using •. Furthermore, let V = {v1, v2, . . .} be set of variables, and

w ∈W def= (A ∪ V)∗ a finitely generated word that includes both letters and variables then a

word equation E is a pair of words (w1, w2) ∈W×W (we will represent as w1 = w2). We

override word context ρ : V → A∗ to the domain A ∪ V by mapping constants to themselves,

and override ρ to W by replacing each letter within a word with its value in ρ. Then ρ is a

solution of word equation w1 = w2 if ρ(w1) = ρ(w2).

Example 7.1.1. Let A = {0, 1} be the alphabet then x1y = 1x001 is a word equation over

A and ρ = {x 7→ 11, y 7→ 001} is a solution. /

The satisfiability (SAT) of word equation asks whether a word equation w1 = w2 has a

solution ρ. Makanin proposed a complete treatment to this problem in a series of papers

[Mak77, Mak83, Mak85] but his method was highly intractable (quadruple-exponential non-

deterministic time [KP96]). Substantial research since has improved this bound, e.g. [AP89,

Jaf90]. Also, by a result in [BS90], the existential theory over word equations is known to

be PTIME-reducible to SAT of a single word equation and thus it is sufficient to analyze

solutions for a single word equation. Here we state the best known complexity bounds for

word equations:

Proposition 7.1.1 ([Pla04, Pla06, Mar82, Kus06]). The SAT problem of word equation

has lower bound NP-hard and upper bound PSPACE. Furthermore, the first-order theory of

∗For fundamental definitions and results in logics and complexity please refer to §6.1.2.

Chapter 7. Fragments of ./ and their complexity 178

word equation is undecidable. /

7.1.2 Bottom-up tree automaton

In detail, a bottom-up tree automaton is represented as A = 〈Q,F,Qf , δ〉 such that:

1. Q is the set of states.

2. F = {f r1
1 , . . . f rmm } is the ranked alphabet in which fi is the alphabet symbol and

ri ∈ N is its associated arity.

3. Qf ⊆ Q is the set of accepting states.

4. δ is the set of transition rules of the form:

g(q1(t1), . . . , qn(tn)) 7→ qn+1(g(t1, . . . , tn)).

in which gn ∈ F is an n-ary symbol, gi is a state and ti is a subtree variable. Informally,

these rules allows us to infer the state of the parent node from the states of its children.

We call A deterministic if any two rules in δ have different left hand sides, otherwise A is

nondeterministic. Let t be a tree term constructed from F then A runs on t by first applying

δ at each leaf of t spontaneously and then proceeding upward. We say A accepts t if the

state associated with the root of t is an accepting state in Qf .

Example 7.1.2. Let F = {•0, ◦0, node2} be the ranked alphabet for Boolean binary trees.

We will construct a tree automaton that only accepts canonical trees. In particular:

1. Q = {q◦, q•, qn} is the set of states.

2. Qf = {qn} contains a single accepting state.

3. The transition relation δ consists of the following rules:

• 7→ q•(•) ◦ 7→ q◦(◦) node(q1(t1), q2(t2)) 7→ qn(node(t1, t2)), {qn} ⊆ {q1, q2}

node(q◦(t1), q•(t2)) 7→ qn(node(t1, t2)) node(q•(t1), q◦(t2)) 7→ qn(node(t1, t2)).

Chapter 7. Fragments of ./ and their complexity 179

node(qn(node(•, ◦)), q◦(◦)) 7→ qn(node(node(•, ◦), ◦))

node(q•(•), q◦(◦)) 7→ qn(node(•, ◦))

• 7→ q•(•) ◦ 7→ q◦(◦)

◦ 7→ q◦(◦)

Figure 7.1: An accepting run of tree automaton in Ex. 7.1.2 over node(node(•, ◦), ◦).

In short, the automaton will get stuck if it encounters two child leaves with the same value and

thus any accepted tree is guaranteed to be in canonical form. We demonstrate in Figure 7.1

an accepting run over the tree
• ◦ ◦

which is explicitly written as node(node(•, ◦), ◦). /

Remark. The counterpart of bottom-up tree automaton (BTTA) is its top-down version

(TDTA) in which a run over tree term t is executed from root downward leaves and t is

accepted if all its leaves are in accepting states. It is well-known (e.g. [CDG+07]) that

nondeterministic BTTAs have the same expressive power as nondeterministic TDTAs in

the sense that one can simulate the other. Interestingly, deterministic BTTAs are more

expressive than deterministic TDTAs because informally speaking, the state of the parent

node has no information of its children’s states. As it is sufficient to construct tree automatic

structures from BTTAs, we skip the formal definition of TDTAs.

7.1.3 Tree automatic structures

Informally, a structure A = 〈U , g1, . . . , gk〉 is tree automatic if its domain U and function-

s/predicates gi can be computed using tree automata. First, we explain how to construct tree

automaton for a predicate P (function is a special predicate in which the last argument is the

output). Let t1, . . . , tn be tree terms then the convolution of tuple (t1, . . . , tn) is computed

by aligning all t1, . . . , tn from left to right together at their roots. As it is common that

t1, . . . , tn have different shapes, we fill in missing spots using a special symbol �.

Chapter 7. Fragments of ./ and their complexity 180

[node, node, •]

[node, ◦, �]

[•, �, �] [◦, �, �]

[•, node, �]

[�, ◦, �] [�, •, �]

Figure 7.2: The convolution of (t1, t2, t3) in Ex. 7.1.3.

Example 7.1.3. Let t1 =
• ◦ •

, t2 =
◦ ◦ •

and t3 = •∗ then the convolution of the

triple (t1, t2, t3) is the tree in Fig. 7.2. /

Generally, the convolution of predicate P is the convolution set of all its member tuples. We

say predicate P is accepted by tree automaton R if R accepts the convolution of P .

Example 7.1.4. Here we will construct a tree automaton R that accepts the tree union

t. To make it simple, we temporarily skip the canonical form of input and output trees,

e.g., our tree can have trees like
• •

,
• • •

as input or output. Notice that from R, it is

fairly straightforward (but tedious due to many combinations) to construct a modified tree

automaton R′ in which the canonical form is enforced as done in Ex. 7.1.2. In detail:

1. A = {[a, b, c]r | [a, b, c] ∈ {node, •, ◦, �}3} is the ranked alphabet in which [a, b, c] has

rank 0 if it contains no node and 2 otherwise.

2. Q = {q(a,b,c) | (a, b, c) ∈ {n, •, ◦}3} is the set of states.

3. Qf = Q is the set of accepting states.

4. The transition δ has ‘leaf’ rules [e1, e2, e3] 7→ q(e′1,e′2,e′3) that satisfies three conditions:

(1) (e′1, e′2, e′3) ∈ {◦, •}3 (2) e′1 t e′2 = e′3 (3) if ei ∈ {•, ◦} then e′i = ei.

In short, the leaf rules help guess the missing values in some tree components. For

example, [�, �, •] 7→ [◦, •, •] and [�, �, •] 7→ [•, ◦, •].

∗We remove internal letters node to make the representation more pleasant.

Chapter 7. Fragments of ./ and their complexity 181

[node, node, •](q(•,◦,•)([•, ◦, �]), q(◦,•,•)([•, ◦, �])) 7→ q(n,n,n)([node, node, •]([•, ◦, �], [•, ◦, �]))

[•, ◦, �] 7→ q(•,◦,•)([•, ◦, �]) [◦, •, �] 7→ q(◦,•,•)([◦, •, �])

Figure 7.3: An accepting run of R in Ex. 7.1.4.

Furthermore, δ also contains the ‘node’ rules:

[e1, e2, e3](q(a1
1,a

1
2,a

1
3)(t1), q(a2

1,a
2
2,a

2
3)(t2)) 7→ q(n,n,n)([e1, e2, e3](t1, t2)).

that satisfies the condition: if ei ∈ {•, ◦} then a1
i = a2

i = ei. In short, the node

rules ensure that the guessing value is indeed consistent with the observed value. For

example, [node, node, •](q(•,◦,•)(t1), q(◦,•,•)(t2)) 7→ qn,n,n([node, node, •](t1, t2)).

We demonstrate an accepting run of R over the instance
• ◦

t
◦ •

= • in Fig. 7.3. /

Finally, we restate a well-known result about the decidability of tree automatic structures:

Proposition 7.1.2 (e.g. [BG04, Blu99, KM07, CDG+07]). The first-order theory of tree

automatic structures is decidable. Furthermore, there exist tree automatic structures whose

first-order complexity is non-elementary. /

7.2 Decidability of general multiplication ./ over tree shares

In this section, we will prove the following results aboutM = 〈T, ./〉:

Theorem 7.2.1. LetM = 〈T, ./〉 then:

1. The existential theory ofM is in PSPACE.

2. The existential theory ofM is NP-hard.

3. The general first-order theory overM is undecidable.

/

Chapter 7. Fragments of ./ and their complexity 182

The proof of Theorem 7.2.1 largely rests on the identical conclusions for the key subtheory

M+ = 〈T+, ./〉, where T+ def= T \ {◦} are the “positive trees” obtained by removing the “zero

element” ◦ from T:

Lemma 7.2.1. LetM+ = 〈T+, ./〉 then:

1. The existential theory ofM+ is in PSPACE.

2. The existential theory ofM+ is NP-hard.

3. The general first-order theory overM+ is undecidable.

/

We will prove Lemma 7.2.1 shortly, but first let us use it to polish off Theorem 7.2.1:

Proof of Theorem 7.2.1. We take each part in turn as follows:

1. Represent the set of variables V = {x1, . . . , xn} in a given formula F of M as a

n-length bitvector. We can enumerate through all possibilities P1, . . . , P2n for this

vector using linear space and binary addition. For each possibility Pj , variable xi’s bit

is 0 to indicate that xi must be ◦ and 1 when xi must be non-◦. For each xk that is

marked as ◦, we substitute ◦ for xk in F to reach Fj and simplify using the rules

π2 = ◦
π1 ./ ◦ = π2

π2 = ◦
◦ ./ π1 = π2

π1 = ◦ ∨ π2 = ◦
π1 ./ π2 = ◦

π2 6= ◦
π1 ./ ◦ 6= π2

π2 6= ◦
◦ ./ π1 6= π2

π1 6= ◦ ∧ π2 6= ◦
π1 ./ π2 6= ◦ .

We can then just check to make sure that the resulting “fresh” (in)equalities are

consistent with the current value of the bitvector Pj . If not, we have reached a

contradiction and can proceed to the next bitvector Pj+1. If so, then after removing

the trivial equalities (e.g. ◦ = ◦) from Fj we are left with an equivalent formula F+
j

which is inM+, so by Lemma 7.2.1.1 we can check if Fj is satisfiable in PSPACE. If

so, we know that Fj is satisfiable, and thus that F is satisfiable. If not, we proceed to

the next bitvector Pj+1; if all Fj are unsatisfiable then F is unsatisfiable.

Chapter 7. Fragments of ./ and their complexity 183

2. By Lemma 7.2.1.2 it is sufficient to reduce a formula F+ inM+ toM. Let V be the

set of variables in F+ and define F , F+ ∧
(∧
x∈V

x 6= ◦
)
; note that we construct F in

linear time from |F+|. F is satisfiable inM if and only if F+ is satisfiable inM+, so

we are done.

3. Any extension of an undecidable theory is also undecidable and thus we are done.

7.2.1 Infinite alphabets

To define our isomorphism from T+ to A∗ it will be convenient if the alphabet A can be

countably infinite. Accordingly, we must reduce word equations over an infinite alphabet

to the standard finite case. Let σ be the function that extracts the set of alphabet letters

from a word w, e.g. σ(v1a1a3v2) = {a1, a3}, we override σ to word equation w1 = w2 as

σ(w1 = w2) def= σ(w1) ∪ σ(w2). Furthermore, let φ be the projection function that takes

a word w and a set of letters B ⊆ A and removes all letters in w that are not in B, e.g.,

φ(v1a1a3v2, {a1, a2}) = v1a1v2. It follows that φ with fixed B is homomorphism over A, i.e.,

w1 · w2 = w3 iff φ(w1, B) · φ(w2, B) = φ(w3, B). Now we are ready to state and prove the

extension to infinite alphabets:

Lemma 7.2.2. Let A be infinite alphabet and e def= w1 = w2 a word equation over A. Then

e is satisfiable over A iff e is satisfiable over the finite alphabet σ(e). /

Proof. ⇐ is trivial. Let ρ be a solution of e over A, we define ρ′ def= λv. φ(ρ(v), σ(e)) to be

the restriction of ρ over the finite alphabet σ(e). Notice that ρ′ preserves all the letters in e

and ρ(w1) = ρ(w2) implies ρ′(w1) = ρ′(w2). Thus ρ′ is a new solution of e that only contains

letters from finite alphabet σ(e).

On the other hand, we also need to deal with disequations of the form w1 6= w2. Notice that

the result in Lemma 7.2.2 is not applicable for disequations, e.g., a1 6= 1a is not satisfiable

for any a ∈ {1}∗ although it is satisfiable with a = 2. Fortunately, this problem is fairly

easy to fix by allowing the new finite alphabet to contain some extra letters to mark the

Chapter 7. Fragments of ./ and their complexity 184

difference between two words in a disequation. In particular, it is sufficient to add n extra

letters for n disequations:

Lemma 7.2.3. Let A be infinite alphabet and S = {e1, . . . em+n} be a system of m word

equations and n word disequations over A. Then S is satisfiable over A iff S is satisfiable

over σ(S) ∪ {a1, . . . , an} where ai is some extra letter in A but not in σ(S). /

Proof. For a disequation w1 6= w2 to hold, it suffices that w1, w2 are different at least one

place. Let ρ be a solution of S then for each disequation w1 6= w2, we preserve letters in the

first position that w1, w2 differ while changing all other letters not in σ(S) with a fixed letter

in σ(S). For equation w1 = w2, we use the same trick as in Lemma 7.2.2 but instead remove

letters not in σ(S), we replace them with some fixed letter in σ(S) so that the word’s length

is preserved. As a result, we only need at most one extra letter for each disequation and

thus effectively reduce the infinite alphabet to finite one.

7.2.2 Finding an infinite alphabet inside T+

Since ./ is a kind of multiplication operation, and the fundamental building blocks of 〈N,×〉

are prime numbers, it is natural to wonder whether there is an analogue on trees. There is:

Definition 7.2.1. A tree τ 6= • is prime if it cannot be factorized into smaller trees, i.e.:

∀τ1, τ2. τ = τ1 ./ τ2 ⇒ (τ1 = • ∨ τ2 = •).

Furthermore, let Prime(τ) indicate τ is prime and P be the set of all prime trees. /

Example 7.2.1. Examples of tree primes are
◦ •

and

• ◦ • ◦

. On the other hand,

the tree
◦ • ◦

is not prime since it can be factored as
• ◦

./
◦ •

. /

To begin with, we need the following technical lemma which allows us to split an application

of bowtie τ2 ./ τ3 to children of τ2:

Lemma 7.2.4. Let τ1, τ2, τ3, τ l1, τ
r
1 ∈ T+ and τ1 = τ2 ./ τ3 ∧ τ1 =

τ l1 τ r1

then either one of

Chapter 7. Fragments of ./ and their complexity 185

the following properties holds:

1. τ2 = • and τ1 = τ3, or

2. There exist τ l2, τ r2 such that τ2 =
τ l2 τ r2

and τ l1 = τ l2 ./ τ3 and τ r1 = τ r2 ./ τ3.

/

Proof. The case τ2 = • is trivial. Otherwise, there exist τ l2, τ r2 ∈ T such that τ2 =
τ l2 τ r2

.

By definition of ./, τ1 = τ2 ./ τ3 is computed by replacing each leaf • in τ2 with τ3, which is

equivalent to replace each leaf • in τ l2 and τ r2 with τ3.

Thus, τ l1 = τ l2 ./ τ3 and τ r1 = τ r2 ./ τ3.

Now we show that prime trees are finitely many and have similar characteristics as prime

numbers in which they can be used as the basis to represent the entire domain:

Lemma 7.2.5. Prime trees have the following properties:

1. There are countably infinitely many prime trees.

2. Let τ1, τ ′1, τ2, τ ′2 ∈ P, τ1 ./ τ2 = τ ′1 ./ τ
′
2 iff τ1 = τ ′1 and τ2 = τ ′2.

3. Two prime tree sequences {τ i1}k1
i=1 and {τ i2}k2

i=1 are equal iff their ./ products are equal:

./k1
i=1 τ

i
1 =./k2

i=1 τ
i
2 ⇔ (k1 = k2

k1∧
i=1

τ i1 = τ i2).

/

Proof of Lemma 7.2.5. We let Tn be the set of trees with height at most n.

1. We construct an infinite sequence S of prime trees: let p1
def=
• ◦

, pj
def=
pj−1 •

, i.e.:

S
def=

• ◦
,

• ◦ •
,

• ◦ • •
, . . .

.

Chapter 7. Fragments of ./ and their complexity 186

It is immediate that p1 is prime. To prove that pi is prime for i > 1, we proceed as

follows. Suppose pi = τ1 ./ τ2 and neither τ1 nor τ2 is •. The right subtree of each pi

is just • and by the definition of ./ must contain a copy of τ2, i.e. τ2 = •, so we have a

contradiction and pi is prime.

2. We prove by induction on the height of τ1, τ ′1. The base case T0 is easy to verify.

Assume it holds for Tk and τ1, τ ′1 ∈ Tk+1. Let τ1 =
τ l1 τ r1

and τ ′1 =
τ l
′

1 τ r
′

1

then by

Lemma 7.2.4, we derive:

τ l1 ./ τ2 = τ l
′

1 ./ τ ′2 and τ r1 ./ τ2 = τ r
′

1 ./ τ ′2.

The induction hypothesis yields τ l1 = τ l
′

1 , τ r1 = τ r
′

1 and τ2 = τ ′2. Consequently, τ1 = τ ′1.

3. This is a simple generalization of property 2.

Of course the real fun with prime numbers is the the unique factorization theorem. Since ./

is not commutative we get a stronger version of the traditional theorem:

Lemma 7.2.6. For each τ ∈ T+\{•}, there exists a unique prime sequence τ1, ..., τn ∈ P

such that τ =./ni=1 τi. /

Proof. We prove by induction on the height of τ . The base case T1 is trivial. Assume it

holds for Tk and let τ ∈ Tk+1. If τ is prime then we are done. Otherwise, let τ1, τ2 ∈ Tk\{•}

and τ = τ1 ./ τ2. By our induction hypothesis, there are 2 sequences τ1
1 , ..., τ

1
k1
∈ Tp and

τ2
1 , ..., τ

2
k2
∈ Tp such that τ1 =./k1

i=1 τ
1
i and τ2 =./k2

i=1 τ
2
i and thus τ = (./k1

i=1 τ
1
i) ./ (./k2

i=1 τ
2
i).

The uniqueness is a consequence of property 3 from Lemma 7.2.5.

Corollary 7.2.1. The prime set P ∪ {•} is a basis of M+, i.e. the closure of P over ./

together with • is T+. Furthermore, it is the smallest basis: if B is a basis of M+ then

Tp ∪ {•} ⊆ B. /

Accordingly, we will use P as our “infinite alphabet” in our isomorphism.

Chapter 7. Fragments of ./ and their complexity 187

7.2.3 Connecting tree shares to word equations

Recall that P is the infinite alphabet of prime trees and 〈P∗, •〉 is the corresponding string

structure with concatenation. We are ready to make the central connection needed for

Lemma 7.2.1:

Lemma 7.2.7. The structure 〈T+, ./〉 is isomorphic to 〈P∗, •〉. /

Proof. Let f : T+ → P∗ be defined as follows. First, map the identity element • to the empty

word ε and then for each prime tree τp ∈ T+ map τp to itself. Finally, for each composite

τ ∈ T+ map τ to exactly the concatenation of its (unique) prime factors.

We now wish to prove that for any τ1 and τ2, f(τ1 ./ τ2) = f(τ1) • f(τ1). Let us consider the

easy cases first. If τ1 = • then f(τ1 ./ τ2) = f(τ2) = ε • f(τ2) = f(τ1) • f(τ2). The situation

is symmetric when τ2 = •. Now let us consider the case when neither τ1 nor τ2 is •. Let

p1, . . . , pi be the unique prime factors of τ1 and p′1, . . . , p′j be the unique prime factors of τ2.

By Lemma 7.2.6, p1, . . . , pi, p′1, . . . , p
′
j are exactly the unique prime factors of τ1 ./ τ2, so:

f(τ1 ./ τ2) = f(p1 ./ · · · ./ pi ./ p′1 ./ · · · ./ p′j) = p1 • · · · • pi • p′1 • · · · • p′j =

(p1 • · · · • pi) • (p′1 • · · · • p′j) = f(τ1) • f(τ2).

To prove f is surjective, let w ∈ P∗ be the concatenation of primes p1 • · · · • pi; then by the

definition f(p1 ./ · · · ./ pi) = w. To prove f is injective, suppose f(τ1) = f(τ2). Let p1, . . . pi

be the prime factors of τ1 and p′1, . . . p′j be the prime factors of τ2. Accordingly we know that

p1 • · · · • pi = p′1 • · · · • p′j , and since equality over words can only occur if the words have the

same length and have the same letters, we know i = j and pk = p′k for all k.

Corollary 7.2.2. Similar to word equations, tree equations e over 〈T+, ./〉 contain tree con-

stants and variables; we can map these to word equations e′ over 〈P∗, •〉 by mapping variables

to themselves, constants to the concatenation of their prime factors, and multiplication ./

to concatenation •. The resulting system is equivalent, i.e. if ρ : V → T+ satisfies e then

f ◦ ρ satisfies e′, where ◦ in this case means functional composition and f is the isomorphism

constructed in Lemma 7.2.7. /

Chapter 7. Fragments of ./ and their complexity 188

We are now ready to start tackling Lemma 7.2.1. We start with the simplest:

Proof of Lemma 7.2.1.3. As mentioned in Prop. 7.1.1, the first order theory over word

equations is known to be undecidable. By Lemma 7.2.7 we know that this theory is isomorphic

to the first order theory over tree shares with ./, which accordingly must be undecidable.

To show Lemma 7.2.1.1 we need to know that tree factorization can be done within PSPACE.

In fact we can do much better:

Lemma 7.2.8. Factoring an arbitrary positive tree share τ is in PTIME. /

Proof. Let S(τ) be the set of all subtrees of τ and Sn(τ) ⊂ S(τ) be the set of all subtrees of

τ with height exactly n. S(τ) can be computed recursively:

S(◦) = {◦} S(•) = {•} S(
τ1 τ2

) = S(τ1) ∪ S(τ2) ∪ {
τ1 τ2

}.

If τ = τ1 ./ τ2 ({τ1, τ2} ⊂ T+\{•}), then there exists n ∈ N such that Sn(τ) = {τ2}, that is,

S|τ2|(τ) is exactly the singleton set {τ2}. Additionally, S(τ) = ⋃|τ |
i=0 Si(τ).

Thus we can find all the prime factors of τ (which is inspired from the well-known sieve

of Eratosthenes) as follows: first we compute S(τ) and partition it into S0(τ), . . . ,S|τ |(τ).

Let i ∈ N be the smallest number such that Si(τ) is the singleton set {τ1} for some τ1 ∈ T

(note that i must be larger than 0 since S0(τ) = {◦, •}). If i = |τ | then τ itself is a prime,

otherwise, we replace all subtrees τ1 of τ with • and call the new tree τ ′. If all the “old” •

leaves of τ are replaced and τ ′ is in canonical form then τ = τ ′ ./ τ1, τ1 is a prime factor

of τ , and we can repeat the process with τ ′ to find the next prime factor. Otherwise, we

consider the next singleton set Sj(τ).

If τ has n leaves than its description requires O(n) bits and the time to compute S(τ) is

O(n). Note that |Sk(τ)| ≤ n
k+1 because there are at least k + 1 leaves in a tree of height k.

Therefore, the number of subtrees from height 1 to n is at most Σn
i=1

n
i+1 ≤ n

2. Computing

the height of a subtree τ ′ of τ requires O(n), thus the time to partition S(τ) is O(n3). The

number of times we need to restart the process is O(n2). Consequently, the time for tree

Chapter 7. Fragments of ./ and their complexity 189

factorization is O(n5), polynomial in the description of τ (more efficient solutions exist).

Tree factorization is fundamentally simpler than integer factorization since the representation

of a tree already contains the descriptions of all of its tree factors. In contrast, the connection

between the representation of a number and the representation of its prime factors is vague:

e.g. among the 24 factors of 74,611,647 are 333 (which does not appear at all in the

representation of the original) and 8,290,183 (which only shares a single 1 with the original).

Proof of Lemma 7.2.1.1. We take the tree shares and factor them using Lemma 7.2.8

and then construct the isomorphic system of word equations using the calculated prime

factors as the alphabet using Corollary 7.2.2. As mentioned in Prop. 7.1.1, the best known

complexity bound for the existential word equation problem is PSPACE.

For Lemma 7.2.1.2 we need one final fact:

Lemma 7.2.9. For any n (represented in unary) we can find a length-n sequence of tree

primes S in polynomial time of n. /

Proof. Consider the sequence S from Lemma 7.2.5: the description of pi is only a constant

size larger than the description of pi−1 so the description of S is quadratic in n.

Proof of Lemma 7.2.1.2. Suppose we have an arbitrary problem Q in NP. We can

reduce Q to word equations in polynomial time [Pla04, Pla06]. We then use Lemma 7.2.9

to construct a set of primes the size of the number of alphabet letters that appear in the

equations and map each letter in the word alphabet to a distinct prime, creating a set

of word equations over P∗. Since the representation of the constants does not affect the

computational properties of the theory, we can conclude that T+ is NP-hard.

7.3 Fragment 〈T, ./τ ,τ ./〉

The multiplication operator ./ is a complicated operator compared to the Boolean operators

because it can increase the tree height. Informally, the operator ./ is analogous to the string

concatenation operator as both can be used to create a longer structure. In fact, ./ can be

Chapter 7. Fragments of ./ and their complexity 190

reduced to string concatenation as proved in §7.2. As a result, the first-order theory over

〈T, ./〉 is undecidable, although its existential theory is decidable in PSPACE. Accordingly,

we are interested in a restriction of that theory that will recover decidability for first-order

reasoning. We restrict ./ to take only constants as one operand, obtaining the two families

of unary operators indexed by constants τ :

τ./(x) def= τ ./ x and ./τ (x) def= x ./ τ.

In §7.3.1, we report the decidability and complexity result together with the main proof. In

§7.3.2, we prove the key lemma that is essential to derive our main results.

7.3.1 Decidability and complexity result

Here we will show that the first-order theory ofR = 〈T, ./τ ,τ ./〉 is elementary with complexity

≤log-lin-complete for STA(∗, 2O(n), n)∗:

Theorem 7.3.1. The complexity of Th(R) is ≤log-lin-complete for STA(∗, 2O(n), n). /

We prove Theorem 7.3.1 by solving a similar problem in which •, ◦ are excluded from the

domain T. That is, let T+ = T\{•, ◦} and R+ = 〈T+,τ./, ./τ 〉, we want:

Lemma 7.3.1. The complexity of Th(R+) is ≤log-lin-complete for STA(∗, 2O(n), n). /

The proof of Theorem 7.3.1 from Lemma 7.3.1. The hardness proof is direct from

the fact that τ ∈ R+ can be expressed as τ ∈ R∧ τ 6= ◦ ∧ τ 6= •. The proof for upper bound

is obtained by ‘guessing’ the values of variables. In particular, we partition the domain T

into three disjoint sets S0 = {◦}, S1 = {•} and S2 = T+. We then use a ternary vector of

length n to ‘guess’ the partition domain of n variables in the input formula, e.g., i 7→ Si for

i = 0, 1, 2. If a variable v is ‘guessed’ to be in S0 or S1, we substitute v with either ◦ or •

respectively. Next, each term ./τ (a) or τ./(a) that contains • or ◦ is simplified using the

following identities:

τ ./ • = • ./ τ = τ τ ./ ◦ = ◦ ./ τ = ◦ .

∗Please refer to §6.1.2 for definition of alternating Turing machines and their complexity class
STA(s(n), t(n), a(n)).

Chapter 7. Fragments of ./ and their complexity 191

After this transformation, all the atomic sub-formulas that contain ◦ or • are either v1 = v2

or trivial equalities that can be replaced by either > or ⊥. As a result, the new equivalent

formula is free of • and ◦ and all variables are restricted to T+. Hence the formula can

be solved by the Turing machine that decides Th(R+). The whole guessing process does

not increase the formula’s size or number of quantifier alternations. Thus adding this extra

guessing process will not increase the total complexity of Th(R).

7.3.2 Connection to string structure with successors

In this subsection, we will devote to the proof of Lemma 7.3.1. To prove the complexity

Th(R+), we construct a log-space isomorphism from R+ to the structure of ternary strings

with prefix and suffix successors. Furthermore, the transformed formula has linear size O(n)

where n is the size of the original formula. Here we recall a result from [RV03]:

Proposition 7.3.1 ([RV03]). Let S = 〈{0, 1}∗, P0, P1, S0, S1〉 be the structure of binary

trees with prefix successors P0, P1 and suffix successors S0, S1 such that:

P0(s) = 0 · s P1(s) = 1 · s S0(s) = s · 0 S1(s) = s · 1.

Then the first-order theory of S is ≤log-lin-complete for STA(∗, 2O(n), n). /

The above result can be generalized to successors Ps and Ss with the same complexity:

Lemma 7.3.2. Let Σ be a finite alphabet of size k ≥ 2 and S ′ = 〈Σ∗, Ps, Ss〉 the structure

of binary trees with infinitely many prefix successors Ps and suffix successors Ss for s ∈ Σ∗

such that:

Ps(s′) = s · s′ Ss(s′) = s′ · s.

Then the first-order theory of S ′ is ≤log-lin-complete for STA(∗, 2O(n), n). /

Proof. The proof in [RV03] can be naturally generalized to finite alphabet Σ of size k ≥ 2

with k prefix and suffix successors. For a string s ∈ Σ∗ such that s = a1 . . . an and ai ∈ Σ,

Chapter 7. Fragments of ./ and their complexity 192

the successors Ps and Ss can be defined in linear size from successors in S as below:

Ps
def= λs′. Pa1(. . . Pan(s′)) Ss

def= λs′. San(. . . Sa1(s′)).

As these definitions require no additional quantifier variable, the result follows.

Next, we recall some key results from §7.2.2 about the construction of an isomorphism

between trees and strings in word equation:

Definition 7.3.1. A tree τ in T\{◦, •} is prime if τ = τ1 ./ τ2 implies τ1 = • or τ2 = •. /

Proposition 7.3.2. Each tree in T\{◦, •} is uniquely represented as a sequence of prime

trees {τi}ni=1 s.t. τ = τ1 ./ · · · ./ τn.

As a result, each tree in T\{◦, •} can be treated as a string in a word equation in which the

alphabet is P, the countably infinite set of prime trees, and ./ is the string concatenation. /

We show how to encode trees using ternary strings from {0, 1, 2}∗. Since P is countably

infinite, we can construct a bijective encoding function I : P 7→ {0, 1}∗ that encodes each

prime tree as a binary string including the empty string. The mapping Î from T+ to ternary

strings in {0, 1, 2}∗ is constructed from I by using 2 as delimiter between two consecutive

prime trees:

Lemma 7.3.3. Let Î : T+ 7→ {0, 1, 2}∗ be a mapping s.t. Î(τ) = I(τ) for τ ∈ P. Otherwise,

let τ ∈ T+ s.t. τ = τ1 .// τn, τi ∈ P then Î(τ) = I(τ1) · 2 . . . 2 · I(τn).

By Prop. 7.3.2, Î is bijective and Î(τ1 ./ τ2) = Î(τ1) · 2 · Î(τ2). /

We are now ready to make the connection between Lemma 7.3.2 and 7.3.3 by constructing

the isomorphism from ./-structure R+ to ternary string structure S ′:

Lemma 7.3.4. Let f : 〈T+,τ ./, ./τ 〉 7→ 〈{0, 1, 2}∗, Ps, Ss〉 s.t.:

1. For each tree τ ∈ T+, we let f(τ) def= Î(τ).

2. For each function τ./, we let f(τ./)
def= PÎ(τ).

3. For each function ./τ , we let f(./τ) def= SÎ(τ).

Then f is an isomorphism from R+ to S ′. /

Chapter 7. Fragments of ./ and their complexity 193

Proof of Lemma 7.3.1. We use the function f in Lemma 7.3.4 to reduce formulae in R+

to formulae in ternary string structure S ′. It remains to ensure for a tree τ ∈ T+ of size

n, its ternary string f(τ) only has linear size O(n). This can be done by constructing the

encoding function I after observing the input formula. To be precise, given a formula Φ of

R, we first factorize all its tree constants into prime trees, which is in log-space as shown

in Lemma 7.2.8. Suppose the formula contains n prime trees {τi}ni=1 in ascending order of

size then we use the most efficient binary encoding by letting I(τi) = si where si is the ith

string in lexicographic order of {0, 1}∗. Thus the size of τi and the length of si only differ by

a constant factor. Since a tree τ1 .// τn only needs O(∑n
i=1 Î(τi)) to represent, its size

and the length of Î(τ) also differ by a constant factor. Hence, the result follows.

Example 7.3.1. Consider the formula:

Φ def= ∀a∃b∃c. a = b ./

◦ • ◦
∧ b =

◦ • ◦
./ c.

First we factorize all tree constants in Φ:

c1 =
◦ • ◦

=
• ◦

./
◦ •

c2 =
◦ • ◦

=
◦ •

./
• ◦

Let I(
• ◦

) = ε and I(
◦ •

) = 0 then c1 = 20, c2 = 02 and the equivalent formula in S ′ is:

∀a∃b∃c. a = S20(b) ∧ b = P02(c).

/

7.4 Fragment 〈T,t,u, ·̄, ./τ〉

Theorem 7.2.1 shows that the first-order theory (FO) overM is undecidable, so of course

any extension ofM—e.g. with (u,t, ·̄)—also has an undecidable FO. However, if we restrict

Chapter 7. Fragments of ./ and their complexity 194

the form of ./-equations to be π1 ./ τ = π2 where τ ∈ T, then the FO of M is decidable

because the relation is tree-automatic. This type of restriction is inspired by Jain et al.’s

concept of semi-automatic structures [JKS+14], in which relations are restricted so that all

input arguments are fixed constants except for one argument which is a variable. As a result,

certain relations become automatic, e.g. multiplication in unary language.

We will show K = 〈T,u,t, ·̄, ./τ 〉, where ./τ denotes the family of all right-restricted forms

of ./ indexed by tree constants, is tree-automatic by constructing bottom-up tree automata

that recognize the domain T and the relations in K:

Theorem 7.4.1. The structure K is tree-automatic and thus the FO of K is decidable. /

One major application of ./ is to define the predicate multiplication in Chapter 3 that asserts

the split/join ownership of predicates in separation logic. Here the splitting/joining occurs

on the right-hand side of the ./, e.g., the binary string permission model in §3.6.3. Moreover,

many functions need to divide their ownership only a finite number of times before e.g.

calling other functions or indeed themselves recursively. This is because the program text of

functions is finite. Accordingly, we believe that K is worthy of attention.

7.4.1 Tree automata construction

The automaton construction for domain T and union t are provided in Example 7.1.3 and

Example 7.1.4. The automaton construction for intersection u is therefore similar. Hence

we will discuss the automaton construction for the remaining two operators complement ·̄

and bowtie ./τ .

Construction of Ac. The automaton Ac for complement ·̄ is straightforward: we need to

verify the opposite values leaf-wise between two trees∗. To be precise, we have:

1. Q = {q} is the set of state.

2. F = {•, ◦, node, �}2 is the ranked alphabet in which a letter has rank 2 if it contains

node, otherwise it has rank 0.

∗We simplify the construction by assuming that input trees are already in canonical form.

Chapter 7. Fragments of ./ and their complexity 195

3. Qf = {q} contains a single accepting state.

4. The transition δ contains the following rules:

[•, ◦] 7→ q([•, ◦]) [◦, •] 7→ q([◦, •])

[node, node](q(v1), q(v2)) 7→ q([node, node](v1, v2)).

Construction of A./τ . Next, we give the description of bottom-up tree automaton A./τ
that recognizes the predicate ./τ . As the detail construction is significantly complicated, we

will only focus in the high level description. Basically, the representation of the appended

tree τ is finite and thus can be remembered by the automaton. Given a pair (τ1, τ2) s.t.

τ2 = τ1 ./ τ , we traverse upward and use the automaton states to record the observed

subtrees in τ2. The key point here is that we only need to remember subtrees of τ which

require finite amount of memory. Once it is certain that all the subtrees in τ2 are indeed τ ,

it is fairly easy for the automaton to ensure the remaining of τ2 matches with τ1.

Example 7.4.1. We illustrate in Figure 7.5 an accepting run over the instance:

./

• ◦

(
• • ◦

) =
• • ◦

./
• ◦

=

• ◦ • ◦ ◦

The input is (τ1, τ2) = (
• • ◦

,

• ◦ • ◦ ◦

) whose convolution is given in Figure 7.4∗.

/

Remark. As we are about to prove, the other relation τ./ is not tree-automatic in this

representation.

Lemma 7.4.1. In the current representation of tree shares, there exists infinitely many τ

such that τ./ is not tree-automatic. /

First, we recall the Pumping Lemma for tree automata:

∗We simplify node to a single letter n.

Chapter 7. Fragments of ./ and their complexity 196

[n, n]

[•, n]

[�, •] [�, ◦]

[n, n]

[•, n]

[�, •] [�, ◦]

[◦, ◦]

Figure 7.4: Convolution of (τ1, τ2) in Example 7.4.1.

[n, n](qf ([•, n]([�, •], [�, ◦])), qf ([n, n]([•, n]([�, •], [�, ◦]), [◦, ◦]))) 7→
[n, n]([•, n]([�, •], [�, ◦]), [n, n]([•, n]([�, •], [�, ◦]), [◦, ◦])))

[•, n](q•([�, •]), q◦([�, ◦])) 7→
qf ([•, n]([�, •], [�, ◦]))

[�, •]7→q•([�, •]) [�, ◦]7→q◦([�, ◦])

[n, n](qf ([•, n]([�, •], [�, ◦])), qf ([◦, ◦])) 7→
qf ([n, n]([•, n]([�, •], [�, ◦]), [◦, ◦]))

[•, n](q•([�, •]), q◦([�, ◦])) 7→
qf ([•, n]([�, •], [�, ◦]))

[�, •]7→q•([�, •]) [�, ◦]7→q◦([�, ◦])

[◦, ◦] 7→qf ([◦, ◦])

Figure 7.5: An accepting run over tree automaton for predicate ./τ in Example 7.4.1.

Chapter 7. Fragments of ./ and their complexity 197

Definition 7.4.1 (Term, context and substitution [CDG+07]). Let A = (Q,F ,Qf ,∆) be

a tree automaton and V the set of variables. We define T (F , V) the set of all tree terms

derived from F ∪V and T (F , ∅) is the set of ground terms. A term t is linear if each variable

appears at most once in t. A context C is a linear term of T (F , V) and C(F) denotes the

set of all contexts with single variable. A context is trivial if it is reduced to a variable. Let

C[t] be the substitution of C ∈ C(F) by replacing the variable in C with the term t. We

define C0[t] = v where v is the variable in C, C1[t] = C[t] and Cn+1[t] = C[Cn[t]]. /

Proposition 7.4.1 (Pumping Lemma for Tree Automata [CDG+07]). Let L be the set of

all ground terms recognizable by a tree automaton. There is a constant k ∈ N+ satisfying

the following condition: for all ground term t ∈ L and |t| > k, there exists a context

C ∈ C(F), a nontrivial context C ′ ∈ C(F) and a ground term t′ such that t = C[C ′[t′]] and

∀n ∈ N. C[C ′n[t′]] ∈ L. /

Proof of Lemma 7.4.1. Let τ./ where τ =

• ◦ • ◦

. For an input tree τ ′ ∈ T+, the

result tree is

τ ′ ◦ τ ′ ◦

in which the left and right subtree are identical. If τ./ is automatic

then it satisfies the Pumping Lemma. However, the Pumping Lemma only allows us to pump

either the left or the right subtree and thus they will be different after pumping, which is a

contradiction. Now consider the following sequence: τ1 =

• ◦ • ◦

, τn+1 =
τn τn

then

each of the τi./ is not automatic.

7.4.2 Non-elementary lower bound

In §7.4.1, we showed that first-order theory of K = 〈T,t,u, ·̄, ./τ 〉 is decidable by constructing

a tree automatic representation for K. As the complexity of tree automatic structures are

non-elementary in general, no useful upper bound for K was derived from that decidability

result. In this subsection, we will show that the complexity of Th(K) is non-elementary by

reducing the binary tree structure with prefix relation [CH90] into K which is well-known to

be non-elementary:

Chapter 7. Fragments of ./ and their complexity 198

Theorem 7.4.2. The complexity of Th(K) is non-elementary. /

We recall the definition and complexity result of binary trees with prefix relation:

Proposition 7.4.2 ([CH90, Sto74]). Let B = 〈{0, 1}∗, S0, S1,�〉 be the binary tree structure

in which {0, 1}∗ is the set of binary strings, Si is the successor function s.t. Si(s) = s · i, and

� is the binary prefix relation s.t. x � y iff there exists z satisfies x · z = y.

Then the first-order theory of B is non-elementary. /

We proceed to construct a reduction from B to K. For convenience, we use the symbol L

to represent the left tree
• ◦

and R for right tree
◦ •

. In detail, we map the set of strings

{0, 1}∗ into the set of unary trees U(T)that have exactly one black leaf, e.g., • and
◦ • ◦

:

Lemma 7.4.2. Let g : 〈{0, 1}∗, S0, S1,�〉 7→ 〈T,t,u, ·̄, ./τ 〉 s.t.:

g(ε) def= • g(0) def= L g(1) def= R

g(b1 . . . bn) def= g(b1) .// g(bn), bi ∈ {0, 1}

g(S0) def= λs. ./L (g(s)) g(S1) def= λs. ./R (g(s)) g(x � y) def= g(y) v g(x).

Then g is a bijection from {0, 1}∗ to U(T), the set of unary trees. Furthermore, we have

x � y iff g(y) v g(x)∗. /

Proof. The proof that g is bijective is done by proving g is both injective and surjective.

Intuitively, the string s represents the path to the single black leaf in the tree g(s) in which

the letter 0 means ‘left’ and 1 means ‘right’. For example, the tree g(110) = R ./ R ./ L =

◦ •
./
◦ •

./
• ◦

=
◦ ◦ • ◦

represents the path ‘right, right, left’.

In detail, assume g(a1 . . . ak) = g(b1 . . . bh) where ai, bj ∈ {0, 1}. It follows that

g(a1) .// g(ak) = g(b1) .// g(bh).

∗Recall from §6.1.3 that τ1 @ τ2
def= τ1 u τ2 = τ1 ∧ τ1 u τ2 6= τ2.

Chapter 7. Fragments of ./ and their complexity 199

By uniqueness representation of tree shares (Lemma 7.2.6) and the fact that g(ai), g(bj) ∈

{L,R} are tree primes, we conclude that h = k and g(ai) = g(bi) or ai = bi. Hence g is

injective. To see why g is surjective, consider τ ∈ U(T). If τ ∈ {L,R} then we are done.

Otherwise, we can find τ1 ∈ U(T) and τ2 ∈ {L,R} s.t. τ = τ1 ./ τ2. By inductive argument,

there is a binary string s1 s.t. g(s1) = τ1 and s2 ∈ {0, 1} s.t. g(s2) = τ2. Thus

g(s1 · s2) = g(s1) ./ g(s2) = τ1 ./ τ2 = τ.

For the last claim, let τ1, τ2 ∈ U(T) be unary trees then we have τ1 v τ2 iff there exists a

unary tree τ3 ∈ U(T) s.t. τ2 ./ τ3 = τ1 (as a ./ b is a subtree of a). Thus x � y iff ∃z. xz = y

iff ∃z. g(x) ./ g(z) = g(y) iff g(y) v g(x).

One essential criterion of the reduction is to express the type of U(T) using the signature

from K. We show that U(T) is expressible using ./τ and @. Formally:

Lemma 7.4.3. The type U(T) is expressible in K using a ∀-formula:

τ ∈ U(T) iff τ 6= ◦ ∧
(
∀τ ′. ./L (τ ′) @ τ ↔ ./R (τ ′) @ τ

)
.

where τ1 @ τ2
def= (τ1 u τ2 = τ1) ∧ (τ1 u τ2 6= τ2). /

Proof. We prove ⇒ by induction on the height of τ . The base case |τ | = 0, e.g. τ = •, is

simple to check. Thus it remains to prove the case |τ | = n+ 1.

Let τl = ./L (τ ′) = τ ′ ./ L and τr = ./R (τ ′) = τ ′ ./ R where τ ′ is arbitrary. By symmetric

argument, it suffices to prove τl @ τ implies τr @ τ . As |τ | > 0, either τ =
τ1 ◦

or τ =
◦ τ1

for some unary trees τ1. W.l.o.g. let τ =
τ1 ◦

= L ./ τ1. From τ ′ ./ L @ τ , we infer

τ ′ =
τ ′1 ◦

= L ./ τ ′1 for some τ ′1.

Thus τ1 = L ./ τ ′1 ./ L @ L ./ τ1 = τ and therefore τ ′1 ./ L @ τ1. As τ1 is unary and

Chapter 7. Fragments of ./ and their complexity 200

|τ1| < |τ |, the induction hypothesis gives us τ ′1 ./ R @ τ1. Thus:

τr = τ ′ ./ R = L ./ τ ′1 ./ R @ L ./ τ1 = τ.

For ⇐, assume τ 6∈ U(T). As τ 6= ◦, it follows that τ contains at least two black leaves in

its representation. Consequently, we can find τ1 ∈ U(T) s.t. τ1 @ τ and for any τ2 ∈ U(T),

if τ1 @ τ2 then τ2 6v τ . By properties of unary trees, we can represent τ1 as either τ ′1 ./ L

or τ ′1 ./ R for some τ ′1 ∈ U(T). Consequently, we have τ1 @ τ ′1 and thus τ ′1 6v τ . The

premise gives us τ ′1 ./ L @ τ and τ ′1 ./ R @ τ . Hence τ ′1 = τ ′1 ./ (L t R) v τ which is a

contradiction.

Proof of Theorem 7.4.2. Our technique is similar to the one in [Grä90] in which we

interpret formulas of B using the signature of K. The interpretation of constants and symbols

is mentioned in Lemma 7.4.2. Next we replace sub-formula ∃x. Φ with ∃x. x ∈ U(T) ∧ Φ

and ∀x. Φ with ∀x. x ∈ U(T)→ Φ. Thus by Lemmas 7.4.2 and 7.4.3, a string formula in B

can be transformed into an equivalent tree formula in K. Hence the first-order complexity

of K is bounded below by the first-order complexity of B. By Prop. 7.4.2, the first-order

complexity of K is non-elementary.

7.5 Conclusion

We have developed a more precise understanding of the complexity of the tree share model.

We have provided the first serious look at the complexity of the tree multiplication ./

operator and by way of an isomorphism to word equations prove that the existential theory

is in PSPACE and NP-hard while the general first-order theory is undecidable. To recover

decidability, we have found that by restricting multiplication to be by a constant (on

both the left τ./ and right ./τ sides) we obtain a subtheory R whose first-order theory

is STA(∗, 2O(n), n)-complete. Recall from Corollary 6.3.1 that as a Boolean algebra, their

first-order theory is STA(∗, 2nO(1)
, n)-complete, even when arbitrary constants are allowed

in the formulae. Accordingly, we have two theories whose first-order theory is elementarily

decidable. Unfortunately, their combined theory is at best non-elementary, even if we only

Chapter 7. Fragments of ./ and their complexity 201

allow multiplication by a constant on the right side ./τ . Despite these remaining questions,

our understanding of the structure has improved meaningfully, allowing us to contemplate

using it inside practical verification tools. We have already incorporated tree shares and

their Boolean structure into the HIP/SLEEK verification toolchain [NDQC07, LNHC17] and

are actively exploring how to incorporate their multiplicative structure as well. With our

improved understanding of the combined structure K we believe that we can take advantage

of powerful heuristics for automata such as antichain and simulation [ACH+10].

Chapter 8
Conclusion and Future work

Alice: Would you tell me, please, which

way I ought to go from here?

The Cheshire Cat: That depends a

good deal on where you want to get to.

Alice: I don’t much care where.

The Cheshire Cat: Then it doesn’t

much matter which way you go.

Alice: ...So long as I get somewhere.

The Cheshire Cat: Oh, you’re sure to

do that, if only you walk long enough.

Alice in Wonderland.

In this thesis, we conducted a comprehensive study of the tree share structure proposed by

Dockins et al. [DHA09]. Our contributions can be classified into three categories: applications,

systems and theory:

1. For applications, we used tree shares to reason about fractional permissions in program

verification. In §4, we showed how to embed tree shares into assertion language as

well as extract their constraints to solve independently. We also made another major

contribution in §3 by developing a general modal logic framework that allows permission

reasoning over arbitrary predicates. Our approach can handle sophisticated verification

tasks such as bi-abduction inference, induction over inductive predicates and precision

reasoning.

2. For systems, we integrated tree shares into the HIP/SLEEK tool [NDQC07] to verify

practical programs. Our first contribution in §4 is the two complete decision procedures

202

Chapter 8. Conclusion and Future work 203

SAT for satisfiability and IMP for entailment checking over tree share constraints. Our

second contribution in §5 is the two certified procedures GSAT and GIMP that can

additionally handle disequations of the form ¬(a ⊕ b = c). Furthermore, our new

procedures can be run entirely inside the Coq native environment with reasonable

performance.

3. For theory, we established several decidability and complexity results over the tree share

structure. In §6, we proved that the Boolean-like structure 〈T,t,u, ·̄〉 is first-order

decidable and its complexity is STA(∗, 2nO(1)
, n)-complete. In §7, we showed that the

bowtie structure 〈T, ./〉 is almost isomorphic to string structure with concatenation

〈Σ, ·〉. As a result, its existential theory is NP-hard and in PSPACE whereas its

first-order theory is undecidable. To recover decidability for bowtie, we need to

restrict the form of bowtie in the formulae. As a result, we were able to prove two

first-order decidable fragments of bowtie. The first fragment is 〈T,τ ./, ./τ 〉 in which

we require at least one operant must be constant. This fragment has first-order

complexity STA(∗, 2O(n), n)-complete. The second fragment is the combined structure

〈T,t,u, ·̄, ./τ 〉 that includes all Boolean-like operators together with restricted bowtie

whose second operant is constant. Interestingly, although its first-order theory is

decidable, we showed that the complexity is non-elementary.

Lastly, we are left with several directions to explore in the future:

1. For applications, we would like to use tree shares to model different permission types.

At the moment, we mainly use the structure for two fundamental permissions: read and

write. In practice, it is convenient to have other permission types for deallocation, lock

acquire (the permission to acquire a lock) or “counter-deallocation” (the permission

that prevents other threads from deallocating a given resource, even though it may

be weaker than a read permission). As a result, we believe this problem is worth

investigating in the future.

2. For systems, we would like to integrate tree shares as a concrete model for scaling

separation algebra into verification tools for practical purposes. This requires a

specialized decision procedure to handle tree share constraints in 〈T,⊕, ./〉. One piece

Chapter 8. Conclusion and Future work 204

of bad news is that the first-order theory of 〈T,⊕, ./〉 is undecidable and thus reasoning

about a complete procedure is impossible. There are two potential solutions for this

problem: we can either develop a semi-decision procedure, or carefully modify the

logic inference so that the constraints are in the decidable fragment 〈T,⊕, ./τ 〉. Both

approaches are worth considering as long as the procedure can handle a reasonable

range of common tree share constraints.

3. For theory, we are interested in answering several unknown decidability and complexity

queries about tree shares. For instance, it is not yet known whether the structure

〈T,t,u, ·̄,τ ./, ./τ 〉 is first-order decidable or any structure that contains both left-bowtie

τ./ and other Boolean-like operators.

References

[AB07] Andrew W. Appel and Sandrine Blazy. Separation logic for small-step cminor.

In TPHOLs, pages 5–21, 2007.

[ACH+10] Parosh Aziz Abdulla, Yu-Fang Chen, Lukás Holík, Richard Mayr, and Tomás

Vojnar. When simulation meets antichains. In TACAS, pages 158–174, 2010.

[ADH09] Andrew W. Appel, Robert Dockins, and Aquinas Hobor. Mechanized semantic

library, 2009.

[ADH+14] Andrew W. Appel, Robert Dockins, Aquinas Hobor, Lennart Beringer, Josiah

Dodds, Gordon Stewart, Sandrine Blazy, and Xavier Leroy. Program Logics

for Certified Compilers. Cambridge University Press, 2014.

[AP89] H. Abdulrab and J.P Pechuchet. Solving word equations. In Journal of

Symbolic Computation, pages 499–521, 1989.

[App11a] Andrew W. Appel. Efficient verified red-black trees, 2011.

[App11b] Andrew W. Appel. Verified software toolchain. In ESOP, 2011.

[BCO06] Josh Berdine, Cristiano Calcagno, and Peter W. O’Hearn. Smallfoot: Modular

automatic assertion checking with separation logic. In FMCO, pages 115–137,

2006.

[BCOP05] Richard Bornat, Cristiano Calcagno, Peter O’H, and Matthew Parkinson.

Permission accounting in separation logic. In POPL, pages 259–270, 2005.

[BDD+11] Matko Botinčan, Dino Distefano, Mike Dodds, Radu Grigore, Daiva

Naudžiūnienė, and Matthew J. Parkinson. coreStar: the core of jStar. In

K. Rustan M. Leino and Michał Moskal, editors, BOOGIE 2011, pages 65–77,

2011.

205

References 206

[BG04] A. Blumensath and E. Grade. Finite presentations of infinite structures:

automata and interpretations. In Theory of Computer Systems, pages 641–674,

2004.

[BGK17] James Brotherston, Nikos Gorogiannis, and Max Kanovich. Biabduction (and

related problems) in array separation logic. In CADE, 2017.

[Blu99] A. Blumensath. Automatic Structures. PhD thesis, RWTH Aachen, 1999.

[BMSS14] John Tang Boyland, Peter Müller, Malte Schwerhoff, and Alexander J. Sum-

mers. Constraint semantics for abstract read permissions. In FTfJP, pages

2:1–2:6, 2014.

[Boy03] John Boyland. Checking interference with fractional permissions. In SAS,

pages 55–72, 2003.

[Boy10] John Tang Boyland. Semantics of fractional permissions with nesting. ACM

Trans. Program. Lang. Syst., 32(6):22:1–22:33, August 2010.

[Bro06] Stephen Brookes. Variables as resource for shared-memory programs: Se-

mantics and soundness. Electron. Notes Theor. Comput. Sci., 158:123–150,

2006.

[Bro07a] Stephen Brookes. A semantics for concurrent separation logic. Theor. Comput.

Sci., pages 227–270, 2007.

[Bro07b] James Brotherston. Formalised inductive reasoning in the logic of bunched

implications. In SAS, pages 87–103, 2007.

[BS90] J Richard Büchi and Steven Senger. Definability in the existential theory of

concatenation and undecidable extensions of this theory. pages 671–683, 1990.

[CDD+15] Cristiano Calcagno, Dino Distefano, Jeremy Dubreil, Dominik Gabi, Pieter

Hooimeijer, Martino Luca, Peter O’Hearn, Irene Papakonstantinou, Jim

Purbrick, and Dulma Rodriguez. Moving fast with software verification. In

NFM, pages 3–11, 2015.

References 207

[CDG+07] H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard, D. Lugiez,

S. Tison, and M. Tommasi. Tree automata techniques and applications. Avail-

able on: http://www.grappa.univ-lille3.fr/tata, 2007. release October,

12th 2007.

[CDNQ12] Wei-Ngan Chin, Cristina David, Huu Hai Nguyen, and Shengchao Qin. Auto-

mated verification of shape, size and bag properties via user-defined predicates

in separation logic. Sci. Comput. Program., 77(9):1006–1036, August 2012.

[CDOY09] Cristiano Calcagno, Dino Distefano, Peter O’Hearn, and Hongseok Yang.

Compositional shape analysis by means of bi-abduction. In POPL, pages

289–300, 2009.

[CDV09] Cristiano Calcagno, Dino Distefano, and Viktor Vafeiadis. Bi-abductive

resource invariant synthesis. In APLAS, pages 259–274, 2009.

[CH90] Kevin J. Compton and C. Ward Henson. A uniform method for proving lower

bounds on the computational complexity of logical theories. Annals of Pure

and Applied Logic, 48(1):1–79, 1990.

[CHP71] P. J. Courtois, F. Heymans, and D. L. Parnas. Concurrent control with readers

and writers;. Commun. ACM, 14(10):667–668, October 1971.

[Chu36] Alonzo Church. An unsolvable problem of elementary number theory. Journal

of Symbolic Logic, 1(2):73–74, 1936.

[CKS81] Ashok K. Chandra, Dexter C. Kozen, and Larry J. Stockmeyer. Alternation.

J. ACM, 28(1):114–133, January 1981.

[CLQ17] Wei Ngan Chin, Ton Chanh Le, and Shengchao Qin. Automated verification

of countdownlatch, 2017.

[CLRS09] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford

Stein. Introduction to Algorithms (3. ed.). MIT Press, 2009.

[COY07] Cristiano Calcagno, Peter W. O’Hearn, and Hongseok Yang. Local action and

abstract separation logic. In LICS, pages 366–378, 2007.

http://www.grappa.univ-lille3.fr/tata

References 208

[CP17] Arthur Charguéraud and François Pottier. Temporary read-only permissions

for separation logic. In ESOP, pages 260–286, 2017.

[CPV07] Cristiano Calcagno, Matthew Parkinson, and Viktor Vafeiadis. Modular safety

checking for fine-grained concurrency. In SAS, pages 233–248, 2007.

[Dev] http://www.comp.nus.edu.sg/~lxbach/tools/share_infer/.

[DHA09] Robert Dockins, Aquinas Hobor, and Andrew W. Appel. A fresh look at

separation algebras and share accounting. In APLAS, pages 161–177, 2009.

[dMB08] Leonardo de Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In

TACAS, 2008.

[DPJ08] Dino Distefano and Matthew J. Parkinson J. jstar: Towards practical verifica-

tion for Java. In OOPSLA, pages 213–226, 2008.

[dRPDYG14] Pedro da Rocha Pinto, Thomas Dinsdale-Young, and Philippa Gardner. Tada:

A logic for time and data abstraction. In ECOOP, pages 207–231, 2014.

[DYBG+13] Thomas Dinsdale-Young, Lars Birkedal, Philippa Gardner, Matthew Parkin-

son, and Hongseok Yang. Views: Compositional reasoning for concurrent

programs. In POPL, pages 287–300, 2013.

[DYdAB17] Thomas Dinsdale-Young, Pedro da Rocha Pinto, Kristoffer Just Andersen,

and Lars Birkedal. Caper: Automatic verification for fine-grained concurrency.

In ESOP, pages 420–447, 2017.

[DYDG+10] Thomas Dinsdale-Young, Mike Dodds, Philippa Gardner, Matthew J. Parkin-

son, and Viktor Vafeiadis. Concurrent abstract predicates. In ECOOP, pages

504–528, 2010.

[ES03] N. Een and N. Sörensson. An extensible SAT-solver. In SAT, pages 502–508,

2003.

[FLLV15] Jan Fiedor, Zdeněk Letko, João Lourenço, and Tomáš Vojnar. Dynamic

validation of contracts in concurrent code. In EUROCAST, pages 555–564,

2015.

http://www.comp.nus.edu.sg/~lxbach/tools/share_infer/

References 209

[Flo67] Robert W. Floyd. Assigning Meanings to Programs. In J. T. Schwartz,

editor, Proceedings of a Symposium on Applied Mathematics, volume 19 of

Mathematical Aspects of Computer Science, pages 19–31, Providence, 1967.

American Mathematical Society.

[GBC11] Alexey Gotsman, Josh Berdine, and Byron Cook. Precision and the conjunction

rule in concurrent separation logic. Electron. Notes Theor. Comput. Sci., pages

171–190, 2011.

[Ghe12] Cristian A. Gherghina. Efficiently Verifying Programs with Rich Control

Flows. PhD thesis, National University of Singapore, 2012.

[Göd29] K Gödel. The first proof of the completeness theorem. PhD thesis, University

Of Vienna, 1929.

[Grä90] Erich Grädel. Simple interpretations among complicated theories. Information

Processing Letters, 35(5):235–238, 1990.

[GVA07] Bolei Guo, Neil Vachharajani, and David I. August. Shape analysis with

inductive recursion synthesis. In PLDI, pages 256–265, 2007.

[Hal74] Paul R. Halmos. Lectures on Boolean Algebras. Springer, 1974.

[HAZ08] Aquinas Hobor, Andrew W. Appel, and Francesco Zappa Nardelli. Oracle

semantics for concurrent separation logic. In ESOP, 2008.

[HG11] Hobor and Cristian Gherghina. Barriers in concurrent separation logic. In

ESOP, pages 276–296, 2011.

[HG12] Aquinas Hobor and Cristian Gherghina. Barriers in concurrent separation

logic: Now with tool support! Logical Methods in Computer Science, 8(2),

2012.

[HHH08] Christian Haack, Marieke Huisman, and Clément Hurlin. Reasoning about

Java’s reentrant locks. In APLAS, pages 171–187, 2008.

[HLMS11] Stefan Heule, K. Rustan M. Leino, Peter Müller, and Alexander J. Summers.

Fractional permissions without the fractions. In FTfJP, 2011.

References 210

[HM15] Marieke Huisman and Wojciech Mostowski. A symbolic approach to permission

accounting for concurrent reasoning. In ISPDC, pages 165–174, 2015.

[HMP17] Jochen Hoenicke, Rupak Majumdar, and Andreas Podelski. Thread modularity

at many levels: A pearl in compositional verification. In POPL, pages 473–485,

2017.

[Hoa69] C. A. R. Hoare. An axiomatic basis for computer programming. Commun.

ACM, 12(10):576–580, October 1969.

[Hob08] Aquinas Hobor. Oracle Semantics. PhD thesis, Princeton University, 2008.

[HV13] Aquinas Hobor and Jules Villard. The ramifications of sharing in data

structures. In POPL, pages 523–536, 2013.

[HW06] J. Hayman and G. Winskel. Independence and concurrent separation logic.

In LICS, pages 147–156, 2006.

[IO01] Samin S. Ishtiaq and Peter W. O’Hearn. Bi as an assertion language for

mutable data structures. In POPL, pages 14–26, 2001.

[Jaf90] Joxan Jaffar. Minimal and complete word unification. J. ACM, 37(1):47–85,

1990.

[JK03] Erik J. Johnson and Aaron R. Kunze. Ixp2400-2800 Programming: The

Complete Microengine Coding Guide. Intel Press, 2003.

[JKS+14] Sanjay Jain, Bakhadyr Khoussainov, Frank Stephan, Dan Teng, and Siyuan

Zou. Semiautomatic structures. In CSR, pages 204–217, 2014.

[Jon83] Cliff B. Jones. Specification and design of (parallel) programs. In IFIP, pages

321–332, 1983.

[JP11] Bart Jacobs and Frank Piessens. Expressive modular fine-grained concurrency

specification. In POPL, pages 271–282, 2011.

[JSP10] Bart Jacobs, Jan Smans, and Frank Piessens. A quick tour of the verifast

program verifier. In APLAS, 2010.

References 211

[JSS+15] Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon,

Lars Birkedal, and Derek Dreyer. Iris: Monoids and invariants as an orthogonal

basis for concurrent reasoning. In POPL, pages 637–650, 2015.

[KLVU10] Bohuslav Křena, Zdeněk Letko, Tomáš Vojnar, and Shmuel Ur. A platform

for search-based testing of concurrent software. In PADTAD, pages 48–58,

2010.

[KM07] Bakhadyr Khoussainov and Mia Minnes. Three lectures on automatic struc-

tures. In Logic Colloquium, pages 132–176, 2007.

[Koz80] Dexter Kozen. Complexity of boolean algebras. In Theoretical Computer

Science, pages 221–247, 1980.

[Koz06] Dexter C. Kozen. Theory of Computation. Springer, 2006.

[KP96] Antoni Koscielski and Leszek Pacholski. Complexity of Makanin’s algorithm.

J. ACM, 43(4):670–684, 1996.

[Kus06] D. Kuske. Theories of orders on the set of words. In Theoretical Informatics

and Applications, pages 53–74, 2006.

[LCT15] Duy-Khanh Le, Wei-Ngan Chin, and Yong Meng Teo. Threads as resource

for concurrency verification. In PEPM, pages 73–84, 2015.

[LGH12] Xuan-Bach Le, Cristian Gherghina, and Aquinas Hobor. Decision procedures

over sophisticated fractional permissions. In APLAS, 2012.

[LGQC14] Quang Loc Le, Cristian Gherghina, Shengchao Qin, and Wei-Ngan Chin.

Shape analysis via second-order bi-abduction. In CAV, pages 52–68, 2014.

[LH17] Xuan-Bach Le and Aquinas Hobor. Logical reasoning over disjoint fractional

permissions. 2017. Under submission.

[LHL16] Xuan-Bach Le, Aquinas Hobor, and Anthony W. Lin. Decidability and

complexity of tree shares formulas. In FSTTCS, 2016.

References 212

[LHL17] Xuan-Bach Le, Aquinas Hobor, and Anthony W. Lin. Complexity analysis of

tree share operations. 2017. Under submission.

[LM09] K. Rustan Leino and Peter Müller. A basis for verifying multi-threaded

programs. In ESOP, pages 378–393, 2009.

[LNHC17] Xuan-Bach Le, Thanh Toan Nguyen, Aquinas Hobor, and Wei Ngan Chin. A

certified decision procedure for tree shares. In ICFEM, 2017.

[Mak77] G. S Makanin. The problem of solvability of equations in a free semigroup.

In Mat. Sbornik, pages 147–236, 1977.

[Mak83] G. S Makanin. Equations in a free group. In Izvestiya AN SSSR, pages

1199–1273, 1982-1983.

[Mak85] G.S Makanin. Decidability of the universal and positive theories of a free

group. In Izvestiya AN SSSR, pages 735–749, 1984-1985.

[Mar82] S. Marchenkov. Unsolvability of positive ∀∃-theory of free semi-group. In

Sibirsky mathmatichesky jurnal, pages 196–198, 1982.

[MHWL12] Wenrui Meng, Fei He, Bow-Yaw Wang, and Qiang Liu. Thread-modular model

checking with iterative refinement. In NFM, pages 237–251, 2012.

[MO96] Kim Marriott and Martin Odersky. Negative boolean constraints. In Theoret-

ical Computer Science, pages 365–380, 1996.

[MSS16] Peter Müller, Malte Schwerhoff, and Alexander J. Summers. Viper: A verifi-

cation infrastructure for permission-based reasoning. In VMCAI, pages 41–62,

2016.

[NDQC07] Huu Hai Nguyen, Cristina David, Shengchao Qin, and Wei-Ngan Chin. Au-

tomated verification of shape and size properties via separation logic. In

VMCAI, pages 251–266, 2007.

[NLWSD14] Aleksandar Nanevski, Ruy Ley-Wild, Ilya Sergey, and Germán Andrés Del-

bianco. Communicating state transition systems for fine-grained concurrent

resources. In ESOP, 2014.

References 213

[OHe07] Peter W. OHearn. Resources, concurrency, and local reasoning. Theor.

Comput. Sci., 375(1-3):271–307, April 2007.

[ORY01] Peter W. O’Hearn, John C. Reynolds, and Hongseok Yang. Local reasoning

about programs that alter data structures. In CSL, pages 1–19, 2001.

[Pap03] Christos H. Papadimitriou. Computational Complexity. John Wiley and Sons

Ltd., 2003.

[Par05] Matthew Parkinson. Local Reasoning for Java. PhD thesis, University of

Cambridge, 2005.

[PBC06] Matthew Parkinson, Richard Bornat, and Cristiano Calcagno. Variables as

resource in Hoare logics. In LICS, pages 137–146, 2006.

[PH09] Steven Givant Paul Halmos. Introduction to Boolean Algebras. Springer, 2009.

[Pip96] Nicholas Pippenger. Pure versus impure LISP. In POPL, pages 104–109,

1996.

[Pla04] W. Plandowski. Satisfiability of word equations with constants is in PSPACE.

In Journal of the Association for Computing Machinery, pages 483–496, 2004.

[Pla06] W. Plandowski. An efficient algorithm for solving word equations. In STOC,

pages 467–476, 2006.

[Rey02] John C. Reynolds. Separation logic: A logic for shared mutable data structures.

In LICS, pages 55–74, 2002.

[Ric53] H.G Rice. Classes of recursively enumerable sets and their decision problems.

In Transactions of the American Mathematical Society, pages 358–366, 1953.

[RV03] Tatiana Rybina and Andrei Voronkov. Upper bounds for a theory of queues.

In ICALP, pages 714–724, 2003.

[SB14] Kasper Svendsen and Lars Birkedal. Impredicative concurrent abstract predi-

cates. In ETAPS, pages 149–168, 2014.

References 214

[SNB15] Ilya Sergey, Aleksandar Nanevski, and Anindya Banerjee. Mechanized verifi-

cation of fine-grained concurrent programs. In PLDI, pages 77–87, 2015.

[Sol] http://www.comp.nus.edu.sg/~lxbach/certtool/.

[Sri13] Shashi Mohan Srivastava. A Course on Mathematical Logic. 2nd edition,

2013.

[Sto74] L. Stockmeyer. The complexity of decision problems in automata theory and

logic. PhD thesis, M.I.T., 1974.

[Tar55] Alfred Tarski. A lattice-theoretical fixpoint theorem and its applications.

Pacific Journal of Mathematics, 5:285–309, 1955.

[TDB13] Aaron Turon, Derek Dreyer, and Lars Birkedal. Unifying refinement and

Hoare-style reasoning in a logic for higher-order concurrency. In ICFP, pages

377–390, 2013.

[Vaf07] Vafeiadis. Fine-grained concurrency verification. PhD thesis, University of

Cambridge, 2007.

[Vaf09] Viktor Vafeiadis. Shape-value abstraction for verifying linearizability. In

VMCAI, pages 335–348, 2009.

[Vaf11] Viktor Vafeiadis. Concurrent separation logic and operational semantics.

Electron. Notes Theor. Comput. Sci., pages 335–351, 2011.

[Vil11] Jules Villard. Heaps and Hops. PhD thesis, Laboratoire Spécification et

Vérification, École Normale Supérieure de Cachan, France, 2011.

[VLC10] Jules Villard, Étienne Lozes, and Cristiano Calcagno. Tracking heaps that

hop with Heap-Hop. In TACAS, pages 275–279, 2010.

[VP07] Viktor Vafeiadis and Matthew Parkinson. A marriage of rely/guarantee and

separation logic. In CONCUR, pages 256–271, 2007.

[Whi61] John Eldon Whitesitt. Boolean Algebra and Its Applications. Addison-Wesley,

1961.

http://www.comp.nus.edu.sg/~lxbach/certtool/

References 215

[YLB+08] Hongseok Yang, Oukseh Lee, Josh Berdine, Cristiano Calcagno, Byron Cook,

Dino Distefano, and Peter O’Hearn. Scalable shape analysis for systems code.

In CAV, pages 385–398, 2008.

Appendix A
Additional proofs for Chapter 3

Here §A.1 we will show the necessary conditions for the underlying fractional permission

model in order to satisfy the scaling rules. In §A.2, we prove why we cannot have disjointness

axiom together with two distributivity axioms for fractional permissions as well as why we

cannot have the axiom for inverse element of ⊗.

A.1 Necessary conditions for scaling rules

Using fractional heap semantics in §3.5.1, we can derive the following scaling rules from

Fig. 3.2:

Theorem A.1.1. The following rules automatically hold in the fractional heap model:

1. DotPure: π · (|P | ∧ emp) a` |P | ∧ emp.

2. DotPos: P ` Q ⇒ π · P ` π ·Q.

3. DotDisj: π · (P ∨Q) a` π · P ∨ π ·Q.

4. DotConj `: π · (P ∧Q) ` π · P ∧ π ·Q.

5. DotUniv: π · (∀x : τ. P (x)) a` ∀x : τ. π · P (x) for τ 6= ∅.

6. DotExis: π · (∃x : τ. P (x)) a` ∃x : τ. π · P (x).

/

Proof. For DotPure, let h0 be the empty heap, i.e. h0 |= emp then h0 = π ⊗ h0 for all π

and thus the result follows. For DotPos, let h |= π · P then there exists h′ s.t. h = π ⊗ h′

216

Chapter A. Additional proofs for Chapter 3 217

and h′ |= P . By the premise P ` Q, we have h′ |= Q and thus h |= π ·Q.

For DotDisj ⇒, let h |= π · (P ∨Q) then there exists h′ s.t. h = π ⊗ h′ and h′ |= P ∨Q.

W.l.o.g. assume h′ |= P then h |= π · P by definition and thus h |= π · P ∨ π ·Q. The other

direction is similar. The proof for DotConj ` is also similar to the disjunction case.

Both direction in DotExis and the left-to-right of DotUniv are simple. For the other

direction of DotUniv, let h |= ∀x : τ. π ·P (x) then the condition τ 6= ∅ implies the existence

of h′ s.t. h = π ⊗ h′. The rest of the proof is straightforward.

Other scaling rules need certain properties from the permission model. For example, left-to-

right direction of DotPlus needs the right distributivity of ⊗ over ⊕. While the need for

precision condition in DotPlus is standard as mentioned in [Boy10], it is quite complicated

to explain the reason we com up with uniformity condition for DotStar. Briefly speaking,

without that condition, it is impossible to construct a reasonable model to justify the

soundness of our rules. In particular, we will show in §A.2 that without the uniformity

condition then permission models only have at most two elements. For now, let us replace

DotStar with Dotstar′ in which the uniformity precondition is omitted. Then we can

extract the following properties from other scaling rules:

Theorem A.1.2. In the fractional heap model, we need the following properties in the

fractional modelM = 〈U ,⊕,⊗,F , E〉 for scaling rules in Fig. 3.2 over positive permissions:

1. Identity of ⊗ (I⊗): π ⊗F = F ⊗ π = π.

2. Left distributivity (←−D): π ⊗ (π1 ⊕ π2) = (π ⊗ π1)⊕ (π ⊗ π2).

3. Right distributivity (−→D): (π1 ⊕ π2)⊗ π = (π1 ⊗ π)⊕ (π2 ⊗ π).

4. Associativity of ⊗ (A⊗): π1 ⊗ (π2 ⊗ π3) = (π1 ⊗ π2)⊗ π3.

5. Right cancellativity of ⊗ (−→E⊗): (π ⊗ π1 = π ⊗ π2)⇒ π1 = π2.

/

We divide the proof into several lemmas A.1.1-A.1.6 that establish the connection between

scaling rules in Fig. 3.2 and fractional permission properties. Also, we assume that all

permissions π are positive, i.e., π 6= ◦.

Chapter A. Additional proofs for Chapter 3 218

The right-to-left of DotConj needs ⊕ to be right-cancellative as iff condition:

Lemma A.1.1. The following properties are equivalent (π is fixed while other variables are

universal):

1. Predicate (DotConj a): π · P ∧ π ·Q ` π · (P ∧Q).

2. Mapping: π · x π17−→ v ∧ π · x π27−→ v ` π · (x π17−→ v ∧ x π27−→ v).

3. Heap: π ⊗ h1 = π ⊗ h2 ⇒ h1 = h2.

4. Permission (−→E⊗): (π ⊗ π1 = π ⊗ π2)⇒ π1 = π2.

/

Proof. We will show that (3)⇔ (4)⇔ (2) and (1)⇔ (4).

For (4)⇒ (3), let a ∈ dom(h1) ∩ dom(h2) s.t. h1(a) = (v1, π1) and h2(a) = (v2, π2). We will

show that h1(a) = h2(a) or v1 = v2 and π1 = π2. By definition, we have π⊗h1(a) = (v1, π⊗π1)

and π ⊗ h2(a) = (v2, π ⊗ π2) and thus the premise gives us v1 = v2 and π ⊗ π1 = π ⊗ π2.

By (5), we arrive π1 = π2. For (3) ⇒ (4), assume π ⊗ π1 = π ⊗ π2, we pick h1, h2 s.t.

dom(hi) = {a} and hi(a) = (v, πi). Then π⊗ h1 = π⊗ h2 and thus h1 = h2 or π1 = π2. The

case (3)⇔ (4) is similar.

For (4)⇒ (1), let h, ρ |= π · P ∧ π ·Q then h, ρ |= π · P and h, ρ |= π ·Q. Thus there exist

h1, h2 s.t. h = π⊗ h1 = π⊗ h2, h1, ρ |= P and h2, ρ |= Q. By (5), we can prove (4) and thus

h1 = h2. As a result, h1, ρ |= P ∧ Q and thus h, ρ |= π · (P ∧ Q). For (1) ⇒ (4), assume

π ⊗ π1 = π ⊗ π2, we choose P = x
π17−→ v and Q = x

π27−→ v then (5) becomes (3). As (3)

implies (5), the result follows.

Similarly, −→E⊕ is also the corresponding property for DotImpl and DotNeg. On the other

hand, DotFull requires F to be the left identity of ⊕:

Lemma A.1.2. The following properties are equivalent (variables are universal):

1. Predicate (DotFull): F · P a` P .

2. Mapping: F · (x π7−→ v) a` x π7−→ v.

3. Heap: F ⊗ h = h.

Chapter A. Additional proofs for Chapter 3 219

4. Permission (←−I⊗): F ⊗ π = π.

/

Proof. We will show (3)⇔ (4)⇔ (2) and (1)⇔ (4).

For (4)⇒ (3), the case of empty heap is trivial. Otherwise let a ∈ dom(h) s.t. h(a) = (v, π)

then F · h(a) = (v,F ⊗ π) = (v, π). Thus the two heaps are the same. For (3) ⇒ (4), we

pick h s.t. dom(h) = {a} and h(a) = (v, π). Then π · h(a) = (v,F ⊗ π) and thus π = F ⊗ π.

The case (4)⇔ (2) is similar.

For (1)⇒ (4), pick P = x
π7−→ then (1) becomes (2). Since (2)⇒ (4), the result follows. For

(4)⇒ (1), first consider left-to-right direction and assume h, ρ |= F · P . By definition, there

exists h′ s.t. h = F ⊗ h′ and h′, ρ |= P . As (1) ⇒ (3), we have h = h′ and thus h, ρ |= P .

The right-to-left direction is similar.

The fact that F is the right identity of ⊕ follows from DotMap:

Lemma A.1.3. The following properties are equivalent (variables are universal):

1. Mapping (DotMap): π · x 7→ v a` x π7−→ v.

2. Permission (−→I⊗): π ⊗F = π.

where x 7→ v is the shortcut for x F7−→ v. /

Proof. For (1) ⇒ (2), let h, ρ |= π · x 7→ v then there exists h′ s.t. h = π ⊗ h′ and

h′, ρ |= x 7→ v. By definition of map, we have dom(h′) = {x} and h′(x) = (v,F). As a result,

h(x) = (v, π ⊗ F). As h, ρ |= x
π7−→ v, we derive π ⊗ F = π. The direction (2) ⇒ (1) is

similar.

For the rule DotDot, the corresponding permission property is the associativity of ⊗ A⊗:

Lemma A.1.4. The following properties are equivalent (variables are universal):

1. Predicate (DotDot): π1 · (π2 · P) a` (π1 ⊗ π2) · P .

2. Mapping: π1 · (π2 · x
π7−→ v) a` (π1 ⊗ π2) · x π7−→ v.

3. Heap: π1 ⊗ (π2 ⊗ h) = (π1 ⊗ π2)⊗ h.

Chapter A. Additional proofs for Chapter 3 220

4. Permission (A⊗): π1 ⊗ (π2 ⊗ π3) = (π1 ⊗ π2)⊗ π3.

/

Proof. We will show (3)⇔ (4)⇔ (2) and (1)⇔ (4).

For (4)⇒ (3), the case empty heap is trivial. Otherwise, let a ∈ dom(h) s.t. h(a) = (v, π).

Then π1 · (π2 · h)(a) = (v, π1 ⊗ (π2 ⊗ π)) and h(π1 ⊗ π2) · h(a) = (v, (π1 ⊗ π2) ⊗ π). By

(4), we infer that two heaps are the same. For (4)⇒ (3), choose h s.t. dom(h) = {a} and

h(a) = (v, π) and proceed in a similar manner as above. Also, (4)⇔ (2) is similar.

For (4)⇒ (1) left-to-right, let h, ρ |= π1 · (π2 · P) then there exist h′ s.t. h = π1 ⊗ (π2 ⊗ h)

and h′, ρ |= P . As (4)⇒ (3), we have h = (π1 ⊗ π2)⊗ h′ and thus h, ρ |= (π1 ⊗ π2) · P . The

right-to-left direction is similar. For (1)⇒ (4), we pick P = x
ρ7−→ v then (1) becomes (1). As

(2)⇒ (4), the result follows.

Last but not least, the two rules DotPlus and DotStar′ (i.e. without uniformity condition)

require the left and right distributivity ←−D and −→D of ⊗ over ⊕. However, both ←−D and −→D

only ensure the left-to-right direction for their akin scaling rules:

Lemma A.1.5. The following properties are equivalent (π1, π2 are fixed, other variables

are universal):

1. Predicate (DotPlus): (π1 ⊕ π2) · P ` (π1 · P) ∗ (π2 · P).

2. Mapping: (π1 ⊕ π2) · x π7−→ v a` (π1 · x
π7−→ v) ∗ (π2 · x

π7−→ v).

3. Heap: (π1 ⊕ π2)⊗ h = (π1 ⊗ h)⊕ (π2 ⊗ h).

4. Permission (−→D): (π1 ⊕ π2)⊗ π = (π1 ⊗ π)⊕ (π2 ⊗ π).

Furthermore, there exists fractional model satisfies (−→D) but the right-to-left at predicate

level fails. /

Proof. The proof is similar to other proofs above. For the counterexample, choose the

rational model Q = 〈[0; 1],+,⊗〉 then Q satisfies←−D . We let P = x
0.67−−→ v∨y 0.67−−→ v and define

a heap h as dom(h) = {x, y} and h(x) = (v, 0.24), h(y) = (v, 0.24). Then h |= 0.4 ·P ∗ 0.4 ·P

but h 6|= 0.8 · P . As a result, 0.4 · P ∗ 0.4 · P 6` 0.8 · P .

Chapter A. Additional proofs for Chapter 3 221

Lemma A.1.6. The following properties are equivalent (π is fixed, other variables are

universal):

1. Predicate (DotStar′ `): π · (P ∗Q) ` (π · P) ∗ (π ·Q).

2. Mapping: π · (x π17−→ v ∗ x π27−→ v) a` (π · x π17−→ v) ∗ (π · x π27−→ v).

3. Heap: π ⊗ (h1 ⊕ h2) = (π ⊗ h1)⊕ (π ⊗ h2).

4. Permission (←−D): π ⊗ (π1 ⊕ π2) = (π ⊗ π1)⊕ (π ⊗ π2).

Furthermore, there exists fractional model satisfies −→D but the right-to-left at predicate level

fails. /

Proof. Similar as above proofs. For the counterexample, we choose the rational model

Q = 〈[0; 1],+,×〉 then Q satisfies −→D . We let P = Q = x
0.67−−→ v and define h as dom(h) = {x}

and h(x) = (v, 0.6). Then h |= 0.5 · P ∗ 0.5 · Q but h 6|= 0.5(P ∗ Q) because P ∗ Q is not

satisfiable. As a result, (0.5 · P) ∗ (0.5 ·Q) 6` 0.5 · (P ∗Q).

A.2 On essential axioms for fractional permissions

From Theorem A.1.2, we collectively discovered five necessary properties for permission model

M. In addition, as suggested in [COY07], the structure 〈U ,⊕〉 needs to be a cancellative

semi-group to force ∗ behave normally, e.g., ∗ is commutative and associative. In detail,

〈U ,⊕〉 satisfies:

Commutativity of ⊕ (C⊕) : π ⊕ π′ = π′ ⊕ π

Associativity of ⊕ (A⊕) : π1 ⊕ (π2 ⊕ π3) = (π1 ⊕ π2)⊕ π3

Cancellativity of ⊕ (E⊕) : π ⊕ π1 = π ⊕ π2 ⇒ π1 = π2

In our interpretation, the full permission F is the largest permission in which all other

permissions are contained. One the other hand, we have E as the empty permission, which

is essentially the identity for ⊕. These two elements can be expressed by the following

Chapter A. Additional proofs for Chapter 3 222

properties:

Max (M) : ∀π∃π̄. π̄ ⊕ π = F Identity of ⊕ (I⊕) : π ⊕ E = E ⊕ π = π

Also,M needs the disjointness property which states only E can be joined with itself:

Disjointness (D) : π ⊕ π = π′ ⇒ π = π′ = E

We recall that a permission π is positive if π 6= E . To prevent positive permissions from

suddenly dropping to empty when scaling, we require positivity to be closed under ⊗, i.e.:

Positivity (P) : (π 6= E ∧ π′ 6= E)⇒ π ⊗ π′ 6= E

We call 12 properties mentioned above and in Theorem A.1.2 the Essential Scaling Permission

Algebra (ESPA). Optimistically, ESPA is consistent as it is satisfied by the following models:

Lemma A.2.1. LetM1 contain one element in which F = E andM2 contain two elements

{F , E} s.t.:

1. F ⊕ E = E ⊕ F def= F .

2. F ⊕ F is not defined.

3. E ⊕ E def= E .

4. F ⊗ a = a⊗F def= a.

5. E ⊗ a = a⊗ E def= E .

for a ∈ {F , E} thenM1,M2 satisfy ESPA. /

Surprisingly,M1,M2 are the only ESPA models as justified by the following result:

Theorem A.2.1. IfM satisfies ESPA then it only has at most two elements. /

Proof. Suppose there existsM of at least three elements. Then F 6= E∗ and there exists a

∗if E = F then for any π, we have π
I⊕= E ⊕ π = F ⊕ π M= (π̄ ⊕ π)⊕ π

A⊕= π̄ ⊕ (π ⊕ π) D⇒ π = E .

Chapter A. Additional proofs for Chapter 3 223

s.t. a 6= F and a 6= E . By M , let ā s.t. ā⊕ a = F then:

a
I⊗= F ⊗ a M= (ā⊕ a)⊗ a

−→
D= (ā⊗ a)⊕ (a⊗ a)

By a different transformation, we have:

a
I⊗= a⊗F M= a⊗ (ā⊕ a)

←−
D= (a⊗ ā)⊕ (a⊗ a)

Thus:

(ā⊗ a)⊕ (a⊗ a) = (a⊗ ā)⊕ (a⊗ a) E⊕⇒ ā⊗ a = a⊗ ā (F1)

On the other hand:

F I⊗= F ⊗ F M= (a⊕ ā)⊗ (a⊕ ā)
−→
D,
←−
D= (a⊗ a)⊕ (a⊗ ā)⊕ (ā⊗ a)⊕ (ā⊗ ā)

A⊕= (a⊗ a)⊕ [(a⊗ ā)⊕ (ā⊗ a)]⊕ (ā⊗ ā)
F1= (a⊗ a)⊕ [(a⊗ ā)⊕ (a⊗ ā)]⊕ (ā⊗ ā)
D⇒ a⊗ ā = E (F2)

Also, we have ā 6= E (otherwise a I⊕= a ⊕ E = a ⊕ ā M= F contradicts to our assumption).

However, this gives use a ⊗ ā 6= E by positivity P and thus contradicts to F2. Hence M

cannot exist.

Theorem A.2.1 potentially puts an end to the construction of useful fractional permission

models. Fortunately, we overcome this shortcoming by sacrificing the right distributivity

axiom −→D in ESPA. To be precise, let Scaling Permission Algebra (SPA) be the set of axioms

in ESPA except −→D . Then together with the precision and uniformity conditions, we can

show that fractional heaps constructed from SPA models are SSA model in Fig. 3.16 and

thus satisfy the scaling rules in Fig. 3.2:

Theorem A.2.2. Let M = 〈U ,⊕,⊗,F , E〉 be a SPA model then its fractional heaps are

SSA model and thus satisfy all scaling rules. Furthermore, there exists a SPA model with

infinitely many elements. /

Chapter A. Additional proofs for Chapter 3 224

Proof. Let identity(a) def= a = E , force(π, π′) def= π, and mul(π, π′) def= π ⊗ π′. Then M′ =

〈U+,⊕,⊗,F , identity, force,mul〉 is a SSA. By a result from §3.4.4, the fractional heap model

Addr ⇀ Val× U+ is also SSA.

As suggested in §3.5.1, it is desirable that the left inverse of ⊗ exists, i.e., for a permission π,

there exists π′ s.t. π′⊗ π = F . Unfortunately, only the left inverse of F exists which is itself:

Lemma A.2.2. IfM satisfies SPA then it also satisfies π ⊗ π′ = F ⇒ π = π′ = F . /

Proof. Suppose π′ ⊗ π = F . Then:

π′
I⊗= π′ ⊗F M= π′ ⊗ (π ⊕ π̄)

←−
D= (π′ ⊗ π)⊕ (π′ ⊗ π̄) = F ⊕ (π′ ⊗ π̄)

Also let a = π′ ⊗ π̄ then:

π′ = F ⊕ a M= (ā⊕ a)⊕ a A⊕= ā⊕ (a⊕ a) D⇒ a = E

Thus π′ = F ⊕ E I⊕= F and also F = π′ ⊗ π = F ⊗ π I⊗= π.

	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Motivation
	Contributions
	Applications of tree shares
	Systems of tree shares
	Theory of tree shares

	Structure of the thesis

	Preliminaries and notations
	Basic definitions and notations
	Language and structure

	Tree share structure
	Tree share domain and basic operators
	Tree share notations

	Separation logic
	Hoare logic
	Separation logic
	Concurrent separation logic

	Permission models

	Reasoning over disjoint fractional permissions
	Predicate multiplication
	Proof rules for predicate multiplication
	Verification of processTree using predicate multiplication

	Bi-abduction inference
	Fractional residue computation
	Extension of predicate axioms
	Abductive inference
	Frame inference

	A proof theory for fractional permissions
	Base logic
	Proof theory for P and x p y
	A proof theory for proving that predicates are precise
	Proof theory for induction over the finiteness of the heap
	Using our proof theory

	Soundness proof: Building a model for our logic
	Cancellative separation algebras
	Fractional share algebras
	Scaling separation algebras
	Compositionality of scaling separation algebras
	Model for inductive logic

	Lower bounds on predicate multiplication and disjoint shares
	Predicate multiplication's axioms force share model properties
	Disjointness in a multiplicative setting

	Share models
	The shortcoming of rational permissions
	The tree share model for fractional shares
	Applications of tree shares

	The ShareInfer fractional biabduction engine
	Related work and conclusion

	Complete decision procedures for tree share constraints
	Motivation: share constraints in SL formulas
	Shares in HIP/SLEEK and their extraction procedure
	Problems over share equation system

	Decision procedures over tree shares
	Utility functions for SAT and IMP
	Overview of SAT procedure
	Overview of IMP procedure
	Optimizations

	Sufficiency of finite search over tree shares
	The sufficiency of finite search for SAT
	The sufficiency of finite search for IMP

	Experiment evaluation
	Conclusion

	Complete certified procedures for tree share constraints
	Disequations over shares and their motivative problems
	Disequations over tree shares
	Problem formulation

	Overview of our decision procedures
	The architecture of GSAT and GIMP
	Basic notations and definitions

	Decision procedure GSAT
	Overview of GSAT
	Example of GSAT

	Decision procedure GIMP
	Overview of GIMP
	Example of GIMP

	Correctness of GSAT and GIMP
	Domain reduction
	Correctness proof of Theorem 5.3.1
	Correctness proof of Theorem 5.4.1

	Performance-enhancing components
	Experimental evaluation
	Development file list
	Conclusion

	Decidability and complexity of tree shares
	Preliminaries
	Language and structure
	Computational complexity
	Boolean Algebra

	Connection to countable atomless Boolean Algebra
	Upper bound for first-order theory of "426830A T,,,,, "526930B
	Definitions and notations
	Decision procedure for flattening tree formulas
	Analyzing the upper bound complexity

	Conclusion

	Fragments of -3mu and their complexity
	Preliminaries
	Word equation
	Bottom-up tree automaton
	Tree automatic structures

	Decidability of general multiplication -3mu over tree shares
	Infinite alphabets
	Finding an infinite alphabet inside T+
	Connecting tree shares to word equations

	Fragment "426830A T,-3mu,-3mu "526930B
	Decidability and complexity result
	Connection to string structure with successors

	Fragment "426830A T,,,,-3mu "526930B
	Tree automata construction
	Non-elementary lower bound

	Conclusion

	Conclusion and Future work
	References
	Additional proofs for Chapter 3
	Necessary conditions for scaling rules
	On essential axioms for fractional permissions

