
A Certified Decision Procedure for Tree Shares

Xuan-Bach Le˚, Thanh-Toan Nguyen˚, Wei-Ngan Chin˚, and Aquinas Hobor`˚

˚School of Computing and `Yale-NUS College, National University of Singapore

Abstract. We develop a certified decision procedure for reasoning about
systems of equations over the “tree share” fractional permission model of
Dockins et al. Fractional permissions can reason about shared ownership
of resources, e.g. in a concurrent program. We imported our certified
procedure into the HIP/SLEEK verification system and found bugs in
both the previous, uncertified, decision procedure and HIP/SLEEK itself.
In addition to being certified, our new procedure improves previous work
by correctly handling negative clauses and enjoys better performance.

1 Introduction

The last decade has enjoyed much progress in formal methods for concurrency
in both theoretical understanding [14, 22, 24, 36, 37] and tool support [16, 21,
25, 26, 30, 35, 13]. Fractional shares enable reasoning about shared ownership of
resources between multiple parties, e.g. in a concurrent program [7]. The original
model for fractional shares was rational numbers in r0, 1s, with 0 representing
no ownership, 1 representing full ownership, and 0 ă x ă 1 representing partial
ownership. A policy maps permission quanta to allowed actions. One simple
policy maps 1 to the ability to both read and write a memory cell, 0 ă x ă 1
to the ability to read—but not write—the cell, and 0 denying both reading and
writing. We can prevent dangerous read/write and write/write data races by
enforcing that the combined total ownership of each address is no more than 1.

Unfortunately, rational numbers are not an ideal model for shares. Consider
the following recursive predicate definition for fractionally-owned binary trees:

treep`, πq
def
“ p` “ null ^ empq _

D`l, `r. p`
π
ÞÑ p`l, `rq ‹ treep`l, πq ‹ treep`r, πqq

(1)

Here we write a
π
ÞÑ b to indicate that memory location a contains value b and

is owned with (positive/nonempty) share π. We can split and join ownership of

a cell with addition: a
π1
ÞÑ b ‹ a

π2
ÞÑ b %$ a

π1‘π2
ÞÝÑ b; note we use ‘ instead of ` to

indicate that the addition is bounded in [0,1] and thus partial (e.g. 0.6 ‘ 0.6 is
undefined). This tree predicate is obtained directly from the standard recursive
predicate for binary trees in separation logic by asserting only π ownership of the
root and recursively doing the same for the left and right substructures, and so at
first glance looks obviously correct. The problem is that when π P p0, 0.5s, then
tree can describe some non-tree directed acyclic graphs such as the following:

1

root
0.3
ÞÑ pleft, rightq ›

left
0.3
ÞÑ pnull, grandq ›

right
0.3
ÞÑ pgrand, nullq ›

grand
0.6
ÞÑ pnull, nullq

root

left right

grand

0.3 0.3

0.3 0.3

This heap satisfies treeproot, 0.3q despite actually being a DAG (grand is owned
with share 0.3‘ 0.3 “ 0.6).

Parkinson proposed a model based on sets of natural numbers that solved
this issue but introduced others [33], and then Dockins et al. [15] proposed the
following “tree share” model, which fixes all of the aforementioned issues. A tree
share τ P T is inductively defined as a binary tree with boolean leaves:

τ fi ˝ | ‚ | τ τ

Here ˝ denotes an “empty” leaf while ‚ a “full” leaf. The tree ˝ is thus the empty
share, and ‚ the full share. There are two “half” shares: ˝ ‚ and ‚ ˝, and four

“quarter” shares, beginning with ‚ ˝ ˝. It is a feature, rather than a bug, that
the two half shares are distinct from each other.

Notice that we presented the first quarter share as ‚ ˝ ˝ instead of e.g.

‚ ˝ ˝ ˝
. This is deliberate: the second choice is not a valid share because the

tree is not in canonical form. A tree is in canonical form when it is in its most
compact representation under the relation –:

˝ – ˝ ‚ – ‚ ˝ – ˝ ˝ ‚ – ‚ ‚

τ1 – τ 11 τ2 – τ 12

τ1 τ2 – τ 11 τ
1
2

Maintaining canonical form is a headache in Coq but does not introduce any
fundamental difficulty. Accordingly, for this presentation we will simply fold and
unfold trees to/from canonical form when required by the narrative.

Defining the “join” operation ‘ on tree shares formally is somewhat technical
due to the necessity of managing the canonical forms [29, §A] but the core idea
is quite straightforward. Simply unfold both trees under – into the same shape
and join them leafwise using the rules ˝ ‘ ˝ “ ˝, ˝ ‘ ‚ “ ‚, and ‚ ‘ ˝ “ ‚;
afterwards refold under – back into canonical form. Here is an example:

‚ ˝ ˝
‘
˝ ‚ ‚ ˝

–
‚ ˝ ˝ ˝

‘
˝ ‚ ‚ ˝

“
‚ ‚ ‚ ˝

– ‚ ‚ ˝

Because ‚ ‘ ‚ is undefined, the join relation on trees is a partial operation.
Dockins et al. [15] prove that the join relation satisfies a number of useful axioms
e.g. associativity and commutativity (§2.1 has the full list). One key axiom, not
satisfied by pQ,‘q, is “disjointness”: x ‘ x “ y ñ x “ ˝. Disjointness is the
axiom that forces the tree predicate—equation 1—to behave properly: we saw
above that we get a DAG in Q since x‘ x need not be 0.

Due to their good metatheorical properties, various program logics [19, 18]
and tools [38, 21, 3] incorporate tree shares. Gherghina detailed a number of pro-
grams whose verifications used tree shares heavily [17, Ch.4]; these form the core

2

of our benchmark in §4.2. However, most tools have avoided using tree shares
in part because they lacked algorithms that could decide entailments involv-
ing fractionals. Hobor and Gherghina [21] showed how to divide an entailment
between separation logic formulae incorporating fractional ownership into 1) a
fraction-free separation logic entailment, and 2) an entailment between systems
of share equations; this encouraged shares to be studied as a standalone domain.

Le et al. developed a tool to decide tree share entailments [27]. The present
paper improves on their work in several ways. From a practical point of view, our
new tool is fully machine-checked in Coq, giving the highest level of assurance
that both its implementation and underlying theory are rock solid. By compar-
ing our new tool with Le et al.’s, we discovered weaknesses in both the latter’s
implementation and its theory. Moreover, a trend in recent years has been to de-
velop verification toolsets within Coq [4, 10, 3]; since certified tools generally only
depend on other certified tools, such tools have not been able to use Le et al.’s
implementation, but they can use our new tool. Happily, despite the challenges
involved in developing an implementation in Coq, our new tool exhibits improved
performance over Le et al.’s due to a number of heuristics that meaningfully im-
prove performance without sacrificing soundness or completeness; some of these
heuristics should be applicable to future certified procedures.

From a theoretical point of view, our major improvement over Le et al. is
a sound treatment of negations. Negative clauses in logic are often more diffi-
cult to handle than positive ones are. Le et al.’s theory purported to support
a very limited form of negation, which allowed them to force variables to be
nonempty, i.e. π ‰ ˝. We believe the previous theory is unsound when there are
a sufficiently high number of nonempty variables on both sides of an implication.
Our new theory handles arbitrary negative clauses, i.e. pπ1 ‘ π2 “ π3q and is
fully mechanized in Coq. A second theoretical improvement is a more careful
treatment of existential variables.

The rest of this paper is organized as follows. In §2 we define the central
decision problem and give an overview of our procedure. In §3 we show the key
algorithms and outline why they are correct. All our proofs are mechanized in
Coq; additional pen-and-paper details are also available in our appendix [29].
In §4 we discuss our 38.6k LOC certified implementation, describe how we have
incorporated it into the HIP/SLEEK verification toolset [32], and benchmark its
performance. Finally, in §5 we discuss related and future work and conclude.

2 Share constraints and their decision procedures

In §2.1, we introduce the decision problems over tree shares, satisfiability and
entailment over share equation systems. Next we overview our decision procedure
in §2.2 together with a brief description of their components’ functionality. For
convenience, we will use the symbol L to represent ‚ ˝ and R for ˝ ‚.

2.1 Share constraints

Given a SL entailment P $ Q with fractional permissions, there are standard
procedures to separately extract a heap constraint and a share constraint [21,

3

17, 27]. For example, the entailment x
v1
ÞÝÑ 1 › y

R
ÞÝÑ 2 $ x

L
ÞÝÑ 1 yields constraints

v1 ‰ ˝ ^ v2 “ R $ Dv3. L‘ v3 “ v1. Tree constraints pose a technical difficulty
due to the infinite tree domain, e.g., v1 ‘ v2 “ ‚ has infinitely many solutions
tp‚, ˝q, pL,Rq, . . .u. The type of tree constraints we need to deal with can be
represent as Σ1 $ Σ2 where Σi is share equation system:

Definition 1. A share equation system Σ is a quadruple plD, l“, l`, l´q in which:

1. lD is the list of existential variables.

2. l“ is the list of equalities π1 “ π2.

3. l` is the list of equations π1 ‘ π2 “ π3.

4. l´ is the list of disequations pπ1 ‘ π2 “ π3q.

The entailment Σ1 $ Σ2 can be informally understood as “all solutions of Σ1

are also solutions of Σ2”. In theory, it is conventional to treat equalities π1 “ π2
as macros for π1‘˝ “ π2, although our certified tool tracks equalities separately
for optimization purposes. For convenience, we will usually illustrate equation
system as Σ “ tx1, . . . , xn, g1, . . . , gmu in which xi is existential variable and gi
is either equality, equation or disequation.

To define the semantics of Σ, let context ρ be a mapping from variable names
to tree shares. We then override ρ over tree constants as identity, i.e., ρpτq “ τ .
To handle existential variable lists, we define the notion of a context override:

ρrρ1 ð ls
def
“ λx. ρ1pvq if x P l else ρpvq

The semantics of forcing, written ρ |ù Φ, follows natural, e.g., ρ |ù π1 ‘ π2 “ π3
iff ρpπ1q ‘ ρpπ2q “ ρpπ3q and ρ |ù P ^ Q iff ρ |ù P and ρ |ù Q. We say ρ
is a solution of Σ, denoted by ρ |ù Σ, if there exists a context ρ1 such that
ρrρ1 ð lDs |ù l“ ^ l` ^ l´. Consequently, we say Σ1 entails Σ2 if all solutions
of Σ1 are also solutions of Σ2. In this paper, we propose certified algorithms to
solve the satisfiability and entailment over tree shares:

Problem. Let Σ1, Σ2 be share equation systems. Construct a sound and com-
plete procedure to handle the following queries:

1. SATpΣ1q: Is Σ1 satisfiable, i.e., Dρ. ρ |ù Σ1?

2. IMPpΣ1, Σ2q: Does Σ1 entail Σ2, i.e., @ρ. ρ |ù Σ1 ñ ρ |ù Σ2?

Despite allowing negative clauses, entailment is not subsumed by satisfiabil-
ity due to the quantifier alternation in the consequent. One interesting exercise is
to examine the metatheoretical properties of tree shares described by Dockins et
al. [15]; these are given in Figure 1. Several of these are the standard properties
of separation algebras [8], but others are part of what make the tree share model
special. In particular, tree shares are one of the fractional permission models
that simultaneously satisfy Disjointness (forces the tree predicate—equation 1—
to behave properly), Cross-split (used e.g. in settings involving overlapping data
structures), and Infinite splitability (to verify divide-and-conquer algorithms).

4

Functional: x‘ y “ z1 ñ x‘ y “ z2 ñ z1 “ z2
Commutative: x‘ y “ y ‘ x
Associative: x‘ py ‘ zq “ px‘ yq ‘ z
Cancellative: x1 ‘ y “ z ñ x2 ‘ y “ z ñ x1 “ x2
Unit: Du. @x. x‘ u “ x
Disjointness: x‘ x “ y ñ x “ y
Cross split: a‘ b “ z ^ c‘ d “ z ñ Dac, ad, bc, bd.
ac‘ ad “ a^ bc‘ bd “ b^ ac‘ bc “ c^ ad‘ bd “ d

a b ac
ad bd

bcc
d

Infinite splitability: x ‰ ˝ ñ Dx1, x2. x1 ‰ ˝ ^ x2 ‰ ˝ ^ x1 ‘ x2 “ x

Fig. 1. Properties of tree shares

PARTITIONER BOUNDER SIMPLIFIER DECOMPOSER TRANSFORMER

SIMPLIFIERINTERPRETERSMT SOLVERSAT SOLVER

PARTITIONER BOUNDER SIMPLIFIER SAT SOLVER DECOMPOSER

TRANSFORMERSIMPLIFIERINTERPRETERSMT SOLVERIMP SOLVER

Fig. 2. SAT solver and IMP solver

Encouragingly, all of the properties except for “Unit” are expressible as entail-
ments in our format; e.g. associativity is expressed as:

tx‘ a “ b, y ‘ z “ au $ tc, x‘ y “ c, c‘ z “ bu

Unit requires the order of quantifiers to swap; our format can express the weaker
“Multiunit axiom” @x. Du. x‘ u “ x as well as @x. x‘ ˝ “ x.

2.2 Overview of our decision procedure

We use SAT and IMP for the problems and SAT and IMP for the decision pro-
cedures themselves. Although the entailment checker IMP is our main concern,
the satisfiability checker SAT is helpful for at least two reasons. First, SAT helps
to prune the search space; e.g., if the antecedent Σ1 for IMP is unsatisfiable,
we can immediately conclude Σ1 $ Σ2. Second, the correctness of some of the
transformations in IMP require that Σ1 be satisfiable.

The architecture of our system is given in Figure 2. We have two proce-
dures to solve problems over share formulas, one for satisfiability and the other
for entailment, both written in Gallina and certified in Coq. Identically-named
components in the two procedures are similar in spirit but not identical in oper-
ation; thus e.g. there are two different SIMPLIFIER components, one for SAT and

5

another for IMP. The PARTITIONER, BOUNDER, and SIMPLIFIER components
substantially improve the performance of our procedures in practice but are not
complete solvers: in the worst case they do nothing. Since they are included for
performance we will discuss them in more detail in §4.

The DECOMPOSER and TRANSFORMER components form the heart of
our procedure. While the ‘ operation has many useful properties that en-
able sophisticated reasoning about shared ownership in program verifications
(e.g. Figure 1), they are not strong enough for techniques like Gaussian elim-
ination (which even in Q cannot handle negative clauses). In §3 we will de-
scribe DECOMPOSER in detail after developing the necessary theory. Briefly,
DECOMPOSER takes a system of equations with constants of arbitrary com-
plexity and eventually produces a much larger equivalent system in which each
constant is either ˝ or ‚ (i.e., the final system has height zero).

TRANSFORMER is a very sophisticated component mathematically, yet also
the simplest computationally: it just changes the type of the system. That is, it
inputs a tree system of height zero and outputs an equivalent, essentially iden-
tical Boolean system. The only actual computational content is by swapping ˝
for K and ‚ for J. The join relation on Booleans is simply disjoint disjunction:

J‘K “ J K‘J “ J K‘K “ K

The last option, J‘J, is undefined.
INTERPRETER translates Boolean systems of equations into Boolean sen-

tences by rewriting positive and negative equations using the rules

π1 ‘ π2 “ π3 pπ1 ^ π2 ^ π3q _ p π1 ^ π2 ^ π3q _ p π1 ^ π2 ^ π3q

 pπ1 ‘ π2 “ π3q p π1 _ π2 _ π3q ^ pπ1 _ π2 _ π3q ^ pπ1 _ π2 _ π3q

Next, it adds the appropriate quantifiers depending on the query type to reach a
closed sentence. INTERPRETER’s code and correctness proof are straightforward.

SMT SOLVER uses simple quantifier elimination to check the validity of
boolean sentences. Our SMT solver is rather näıve, and thus is the performance
bottleneck of our tool, but we could not find a suitable Gallina alternative. As
discussed in §4, despite its näıveté our overall performance seems acceptable in
practice due to the heuristics in PARTITION, BOUNDER, and SIMPLIFIER.

3 Core algorithms for the decision procedures

We begin with some basic definitions and notions in §3.1 that are essential for
the algorithms and their correctness proofs. In §3.2 and §3.3, we propose our
decision procedures to solve SAT and IMP together with illustrated examples.

3.1 Definitions and notations

We adopt the following definitions and notations. We use nil to denote empty
list, re1, . . . , ens to represent list’s content, and l `̀ l1 for list concatenation. We

6

Algorithm 1 Solver SAT for systems with disequations

1: function SAT(Σ)
2: if SAT`(Σ`) = K then return K
3: else if l´ “ nil then Ź l´ is the disequation list in Σ
4: return J
5: else let l´ “ rη1, . . . , ηns
6: return

Źn
i“1 SSAT(Σηi)

use the metavariable η to represent a single disequation. The symbols Σ and Π
are reserved for systems and pairs of systems respectively; if the exact form of
our systems is not important or is clear from the context, we may refer it as Γ .
The symbol ρ and S are for contexts and solutions respectively. We use |τ | to
indicate the height of τ . Also, we will override the height function |¨| for equation
systems and contexts to indicate the height of the highest tree constant. For a
tree τ , we let τl and τr to be the left and right sub-trees of τ , i.e., τ “ τl “ τr if
τ P t˝, ‚u and τ “ τl τr otherwise. We define several basic systems for SAT and

IMP as the building blocks of the decision procedures:

Definition 2. Let Σ,Σ1, Σ2 be share equation systems and η, η1, η2 disequa-
tions. Let l be a list of disequations, we define Σl to be the new equation system
in which the disequation list in Σ is replaced with l. For convenience, we write
Ση as shortcut for Σrηs, and Σ` as shortcut for Σnil. Then:

1. If the disequation list in Σ is empty then Σ is called a positive system.
2. If there is exactly one disequation in Σ then Σ is called a singleton system.
3. If Σ1 is positive and Σ2 is singleton then pΣ1, Σ2q is called a Z-system.
4. If both Σ1 and Σ2 are singleton then pΣ1, Σ2q is called a S-system.

In particular, Σ` is always a positive system, Ση is always a singleton sys-
tem, pΣ`1 , Σ

η
2 q is always a Z-system, and pΣη1

1 , Ση2
2 q is always an S-system.

3.2 Decision procedure for SAT

We propose the procedure SAT (Alg. 1) to solve SAT of systems with disequa-
tions. For SATpΣq, the existential list is redundant and thus will be ignored.
Our new decision procedure SAT also makes use of the old decision procedure
SAT` from previous work [27] for systems without disequations, e.g., positive
systems. To help the readers gain intuition, we will abstract away all the tedious
low-level implementations and only discuss about the high-level structure. The
execution of SAT consists of two major steps which are described in Alg. 1. First,
the system Σ is separated into a list of singleton systems; each contains a single
disequation taken from the disequation list of Σ. In the second step, each single-
ton system is solved individually using the subroutine SSAT, then their results
are conjoined to determine the result of SATpΣq.

The solver SSAT for singleton system (Alg. 2) calls subroutine DECOMPOSE
(Alg. 3) that helps decompose a share system into sub-systems of height zero.

7

Algorithm 2 Solver SSAT for singleton systems

1: function SSAT(Ση)
Require: Ση is singleton and Σ` is satisfiable
2: rΣ1, . . . , Σns Ð DECOMPOSE(Ση)
3: transform each Σi into Boolean formula Φi
4: ΦÐ

Žn
i“1 Φi

5: return SMT SOLVER(Φ)

Algorithm 3 Decompose system into sub-systems of height zero

1: function DECOMPOSE(Γ)
Require: Γ is either one system (SAT) or pair of systems (IMP)
Ensure: A list of sub-systems of height zero
2: if |Γ | “ 0 then return rΓ s
3: else
4: pΓ1, Γ2q Ð SINGLE DECOMPOSEpΓ q
5: return DECOMPOSEpΓ1q `̀ DECOMPOSEpΓ2q

6:
7: function SINGLE DECOMPOSE(Γ)
Require: Γ is either one system (SAT) or pair of systems (IMP)
Ensure: A pair of left and right sub-system
8: if |Γ | “ 0 then return pΓ, Γ q
9: else

10: Γl Ð replace each tree constant τ in Γ with its left sub-tree τl
11: Γr Ð replace each tree constant τ in Γ with its right sub-tree τr
12: return pΓl, Γrq

These subs-systems subsequently go though a 2-phase process to be transformed
into Boolean formulas. In the first phase, the subroutine TRANSFORM trivially
converts tree type into Boolean type using the conversions ‚ J and ˝
K. Correspondingly, the share system is converted into the Boolean system.
In the second phase, the subroutine INTERPRET helps to interpret the Boolean
system into an equivalent Boolean formula by adding necessary quantifiers (D for
SAT, @ for IMP) and conjunctives among equations and disequations. Finally,
Theorem 1 states the correctness of SAT whose proof is verified in Coq.

Theorem 1. Let Σ be a share system then Σ is satisfiable iff SATpΣq “ J.

Example 1. Let Σ “ tv1 ‘ v2 “ ‚, pv1 “ Lq, pv2 “ ˝qu then SATpΣq is the
valid formula (v1 “ R, v2 “ L is a solution):

Dv1Dv2. v1 ‘ v2 “ ‚ ^ pv1 “ Lq ^ pv2 “ ˝q

First, SAT`pΣ`q is called to check Dv1Dv2. v1 ‘ v2 “ ‚ (which returns J as
v1 “ ˝, v2 “ ‚ is a solution). After that, Σ is split into two singleton systems:

Σ1 “ tv1 ‘ v2 “ ‚, pv1 “ Lqu and Σ2 “ tv1 ‘ v2 “ ‚, pv2 “ ˝qu

8

Algorithm 4 Solver IMP for entailment of share systems with disequations

1: function IMP(Σ1, Σ2)
2: if SATpΣ1q “ K then return K
3: else if IMP`

pΣ`
1 , Σ

`
2 q “ K then return K

4: else let l´1 , l
´
2 be disequation lists of Σ1, Σ2

5: if l´2 “ nil then return J
6: else let l´2 “ rη

1
2 , . . . , η

n
2 s

7: if l´1 “ nil then return
Źn
i“1 ZIMPpΣ`

1 , Σ
ηi2
2 q

8: else let l´1 “ rη
1
1 , . . . , η

m
1 s

9: for i “ 1 . . . n and j “ 1 . . .m do

10: let Zi Ð ZIMPpΣ`
1 , Σ

ηi2
2 q and Sji Ð SIMPpΣ

η
j
1

1 , Σ
ηi2
2 q

11: return
Źn
i“1pZi _ p

Žm
j“1 S

j
i qq

When NSATpΣ1q is called, Σ1 is split into Σ1
1 and Σ1

2 by DECOMPOSER:

Σ1
1 “ tv1 ‘ v2 “ ‚, pv1 “ ‚qu and Σ1

2 “ tv1 ‘ v2 “ ‚, pv1 “ ˝qu

The two systems Σ1
1 , Σ

1
2 are transformed into boolean formulas Φ1

1 and Φ1
2:

Φ1
1 “ Dv1Dv2. ppv1 ^ v2q _ p v1 ^ v2qq ^ v1

Φ1
2 “ Dv1Dv2. ppv1 ^ v2q _ p v1 ^ v2qq ^ v1

As both Φ1
1 and Φ1

2 are valid, NSATpΣ1q returns J. Similarly, one can verify that
NSATpΣ2q also returns J and thus SATpΣq returns J as the result. [\

Additional details of the soundness proof for SAT can be found in [29, §B.1],
which uses a technique we call “domain reduction”, explained in [29, §A.1]. We
finish §3.2 by pointing out a decidability result of ‘:

Corollary 1. The D-theory of M “ xT,‘,“y is decidable.

Proof. Let Ψ be a quantifier-free formula in M, we convert Ψ into Disjunctive
Normal Form

Žn
i“1 Ψi then each Ψi can be represented as a constraint system

Σi. As a result, Ψ is satisfiable iff some Σi is satisfiable which can be solved
using Algo. 1. Thus the result follows.

3.3 Decision procedure for IMP

Our IMP procedure (Alg. 4) deploys a similar strategy as for SAT by reducing
the entailment into several entailments of the basic systems (e.g. Z-system and
S-system). In detail, IMP verifies the entailment Σ1 $ Σ2 by first calling two
solvers SATpΣ1q and IMP`pΣ`1 , Σ

`
2 q

1 (line 2 and 3). Then the lengths of the
two disequation lists (l´1 in Σ1 and l´2 in Σ2) critically determine the subsequent
flow of IMP. To be precise, there are three different cases of l´1 and l´2 that fully
cover all the possibilities:

1 This is the entailment checker for positive constraints from previous work [27].

9

Algorithm 5 Solvers for entailment of Z-systems and S-systems

1: function ZIMP(Σ1, Σ2)
Require: pΣ1, Σ2q is Z-system, Σ1 is satisfiable and Σ1 $ Σ`

2

2: rΓ1, . . . , Γns Ð DECOMPOSE(Σ1, Σ2)
3: transform each Γi into Boolean formula Φi
4: ΦÐ

Žn
i“1 Φi

5: return SMT SOLVER(Φ)

6:
7: function SIMP(Σ1, Σ2)
Require: pΣ1, Σ2q is S-system, Σ`

1 is satisfiable, Σ`
1 $ Σ`

2 and Σ`
1 & Σ2

8: rΓ1, . . . , Γns Ð DECOMPOSE(Σ1, Σ2)
9: transform each Γi into Boolean formula Φi

10: ΦÐ
Źn
i“1 Φi

11: return SMT SOLVER(Φ)

1. If l´2 “ nil (line 5) then the answer is equivalent to IMP`pΣ`1 , Σ
`
2 q, i.e., J.

2. Otherwise, we check whether l´1 “ nil (line 7) from which the answer is con-

joined from several entailments of Z-systems pΣ1, Σ
ηi2
2 q; each is constructed

from pΣ1, Σ2q by removing all disequations in Σ2 except for one. Here we
call the subroutine ZIMP which is a specialized for entailment of Z-systems.

3. The third case is neither l´1 nor l´2 is empty (line 8). Then Σ1 $ Σ2 is derived
by taking the conjunction of several entailments of Z-systems and S-systems
altogether. Here we use SIMP to solve S-system entailments.

Two specialized solvers ZIMP and SIMP are described in Alg. 5. For ZIMP,
we first call the subroutine DECOMPOSE to split the Z-system into sub-systems
of height zero. Next, each sub-system is transformed in to Boolean formula by
adding necessary quantifiers and logical connectives. These Boolean formulas
are then combined using disjunctions to form a single Boolean formula; and
this formula is solved using standard SMT solvers to determine the result of
the entailment. The procedure for SIMP has a similar structure, except that the
final Boolean formula is formed using conjunctions. Also, it is worth noticing that
there are certain preconditions for both solvers; and all of them are important
to shape the correctness of the solvers. Last but not least, the correctness of IMP
is mentioned in Theorem 2; and its proof is verified entirely in Coq.

Theorem 2. Let Σ1, Σ2 be share systems then Σ1 $ Σ2 iff IMPpΣ1, Σ2q “ J.

Example 2. The infinite splitability of tree share (Fig.1):

@v. pv ‰ ˝ ñ Dv1Dv2. v1 ‘ v2 “ v ^ v1 ‰ ˝ ^ v2 ‰ ˝q

can be represented as the entailment Σ1 $ Σ2 s.t.:

Σ1 “ t pv “ ˝qu and Σ2 “ tv1, v2, v1 ‘ v2 “ v, pv1 “ ˝q, pv2 “ ˝qu

This entailment will go though Algo. 4 until line 8 because both disequation
lists are nonempty. As there are two disequations in Σ2, namely η1 : v1 ‰ ˝ and

10

η2 : v2 ‰ ˝, we need to verify the conjunction P1 ^ P2 s.t.:

P1 “ ZIMPpΣ`1 , Σ
η1
2 q_SIMPpΣ1, Σ

η1
2 q and P2 “ ZIMPpΣ`1 , Σ

η2
2 q_SIMPpΣ1, Σ

η2
2 q

For P1, ZIMPpΣ`1 , Σ
η1
2 q is equivalent to @v. pJ ñ Dv1, v2. v1‘v2 “ v^v1 ‰ ˝q

which is false by choosing v “ ˝ so that both v1 and v2 must also be ˝. Likewise,
SIMPpΣ1, Σ

η1
2 q is equivalent to @v. pv ‰ ˝ ñ Dv1, v2. v1‘v2 “ v^v1 ‰ ˝q which

is transformed into the boolean formula:

Φ1 “ @v. pv ñ Dv1, v2. pp v1^ v2^ vq_pv1^ v2^vq_p v1^v2^vqq^v1q

As Φ1 is valid, P1 is true. Same result holds for P2 and thus Σ1 $ Σ2. [\

Additional details of the soundness proof for IMP can be found in [29, §B.2],
again using domain reduction [29, §A.1].

4 Performance, evaluation, and implementation

Having described the heart of our decision procedures, what remains is to de-
scribe the practical aspects of their development and evaluation. In §4.1 we
describe various techniques that enable good performance in practice. In §4.2
we describe how we benchmarked our tool running inside Coq, running as a
standalone compiled program, and after incorporating it into the HIP/SLEEK
verification toolset. In [29, §C] we document the files in the development itself;
we have approximately 38.6k lines of code in 31 files.

4.1 Performance-enhancing components

The architecture of our tool was given in §2.2 (Figure 2). The key DECOMPOSER,
TRANSFORMER and INTERPRETER components were discussed in §2.2, §3.2,
and §3.3. Here we give details on the PARTITIONER, BOUNDER, and SIMPLIFIER
modules. Their principal goal is to shrink the search space and uncover contra-
dictions, although they each do so in a very different way. Although in practice
they can substantially improve performance, none of these components is a com-
plete solver. The key ideas in these components were developed previously [21,
27], although not all together. We have made a number of incremental enhance-
ments, but our major contribution for these is components is the development
of high-performing general-purpose certified implementations.

PARTITIONER. The goal of this module is to separate a constraint system into
independent subsystems. Two systems are independent of each other if they do
not share any common variable (with existential variables bound locally).

The partition function is implemented generically : in other words it does not
assume very much about the underlying domain. To build the module, we must
specify types of variables V , equations E, and contexts C. We also provide a
function σ : E ñ LpV q that extracts a list of variables from an equation, an

11

overriding function written ρ1rρð ls, and an evaluation relation written c |ù e.
The soundness proof requires two properties that relate these inputs as follows:

ρ |ù e σpeq X l “ H

ρrρ1 ð ls |ù e
disjointness

ρ |ù e σpeq Ă l

ρ1rρð ls |ù e
inclusion

Disjointness and inclusion jointly specify that satisfaction of an equation only
depends on the variables it contains: overriding variables not in the equation
does not matter; and from any context, if we override all of the variables that
are in an equation then we can ignore the original context.

It is simple to use PARTITIONER for SAT, but to handle IMP is harder. We
can “tag” equations and variables as coming from the antecedent or consequent
before partitioning and then use these tags to separate the resulting partitioned
systems into antecedents and consequents afterwards.

The implementation of PARTITIONER is nontrivial in purely functional lan-
guages like Coq. One reason is that we need a purely functional union-find
data structure, which we obtain via the impure-to-pure transformation of Pip-
penger [34] applied to the canonical imperative algorithm [11]. In other words, we
substitute red-black trees for memory (mapping “addresses” to “cell contents”)
and pay a logarithmic access penalty, yielding an O

`

n ¨ logpnq ¨αpnq
˘

algorithm.
The termination of “find” turns out to be subtle. Parent pointers are rep-

resented as cells that “point to” other cells; however, those parent cells can be
anywhere in the red-black tree (e.g. item 5 can be the parent of item 10, or the
other way around.) Accordingly an important invariant of the structure is that
“nonlocal links” form acyclic chains, which is the key termination argument.

Given union-find, the algorithm is straightforward: each variable is put into a
singleton set, and then while processing each equation we union the correspond-
ing sets. Lastly, we extract the sets and filter the equations into components.

BOUNDER. The bounder uses order theory to prune the space. Each variable
v is given an initial bound ˝ Ď v Ď ‚. The bounder then tries to narrow these
bounds by forward and backward propagation. For example, if τ1 Ď v1 Ď ‚,
τ2 Ď v2 Ď ‚, and ˝ Ď v3 Ď ‚, then if v1 ‘ v2 “ v3 is an clause we can conclude
that v3’s lower bound can be increased from ˝ to τ1 \ τ2 (where \ computes
the union in an underlying lattice on trees). In some cases, the bounds for a
variable can be narrowed all the way to a point, in which case we can substitute
the variable away. In other cases we can find a contradiction (when the upper
bound goes below the lower bound), allowing us to terminate the procedure.

The bounder is an updated version of the incomplete solver developed by
Hobor et al. [21]. Although our main contribution here is the certified imple-
mentation, we managed to tighten the bounds in certain cases.

SIMPLIFIER. The simplifier is a combination of a substitution engine and several
effective heuristics for reducing the overall difficulty via calculation. For example,
from v ‘ τ1 “ τ2, where τi are constants, we can compute an exact value for v
using an inverse of ‘: v “ τ2a τ1. SIMPLIFIER also hunts for contradictions: for

12

example, from v ‘ v “ ‚ we can reach a contradiction due to the “disjointness”
axiom from Figure 1. The core idea of simplifier was contained in the work of
Le et al. [27], so our main contribution here is our certified implementation.

4.2 Experimental evaluation

Our procedures are implemented and certified in Coq. Users who wish to use
our code outside of Coq can use Coq’s extraction feature to generate code in
OCaml and Haskell, although at present a small bug in Coq 8.4pl5’s extraction
mechanism requires a small human edit to the generated code.

We benchmarked our code in three ways using an Intel i7 with 8GB RAM.
First, we used a suite of 102 standalone test cases developed by Le et al. (53
SAT and 49 IMP) [27] and the 9 metatheoretic properties described in §2.
These tests cover a variety tricky cases such as large number of variables, deep
tree constants, etc. Even running as interpreted Gallina code within Coq, the
time is extremely encouraging at 17 seconds to check all 111 tests. After we
port to Coq 8.5 we can use the native compute tactic to increase performance.

Second, we compiled the extracted OCaml code with ocamlopt. The total
running time to test all 111 previous tests is 0.02 seconds, despite our näıve
SMT solver; our previous tool took 1.4 seconds. Since our SMT solver is a sepa-
rate module, it can be replaced with a more robust external solver such as Z3 [12]
if performance is bottleneck in that spot in the future.

Finally, we incorporated our solver into the HIP/SLEEK verification toolset,
which was previously using the uncertified solver by Le et al.. We did so by
writing a short (approximately 150 line) “shim” that translated the format used
by the previous tool into the format expected by the new tool.

We then benchmarked our tool against a suite of 23 benchmark programs as
shown in Figure 3. 15 of those programs were developed by Gherghina [17] and
utilize a concurrent separation logic for pthreads-style barriers that exercise share
provers extensively. Another 7 tests were developed for the HipCAP project [9],
which extended HIP/SLEEK to reason in a Concurrent Abstract Predicate [14]
style. Finally, we wrote a simple fork/join program for our initial testing.

The results are rather interesting! The left column gives the input file name
to HIP/SLEEK and the second the number of lines in that file. The third col-
umn is the total number of calls into the solver (both SAT and IMP). The
fourth column is the number of times the previous solver by Le et al.
answered the query incorrectly. The fifth column gives the time (in seconds)
spent by Le et al.’s uncertified solver and the sixth column gives the time spent
by our new certified solver. HIP/SLEEK was benchmarked on a more powerful
machine with 16 cores and 64GB RAM.

The uncertified solver got approximately 5.2% of the queries wrong!
In our subsequent investigation, we discovered a number of bugs in the original
solver: code rot (due to a change in the correct mechanism to call the SMT
backend), improper error handling and signaling, general coding errors, and the
incorrect treatment of nonzero variables. We also discovered bugs in HIP/SLEEK
itself, which did not always use the result of the solver in the correct way; this is

13

File LOC # calls # wrong Le et al. [27] Our tool

MISD ex1 th1.ss 36 294 48 2.21 2.37
MISD ex1 th2.ss 36 495 67 4.36 4.48
MISD ex1 th3.ss 36 726 94 6.95 6.58
MISD ex1 th4.ss 36 1,003 123 9.09 8.36
MISD ex1 th5.ss 36 1,320 134 15.74 12.38
MISD ex2 th1.ss 47 837 107 16.77 18.97
MISD ex2 th2.ss 52 1,044 157 29.34 26.02
MISD ex2 th3.ss 87 1,841 260 69.09 64.21
MISD ex2 th4.ss 105 3,023 374 194.17 194.64
PIPE ex1 th2.ss 35 283 7 2.49 2.78
PIPE ex1 th3.ss 44 467 12 4.92 4.65
PIPE ex1 th4.ss 56 678 15 7.00 7.53
PIPE ex1 th5.ss 66 931 18 9.67 9.37
SIMD ex1 v2 th1.ss 74 1,167 281 18.46 17.64
SIMD ex1 v2 th2.ss 95 2,029 392 63.83 53.50

cdl-ex1a-fm.ss 49 7 0 0.10 0.08
cdl-ex2-fm.ss 50 9 0 0.12 0.09
cdl-ex3-fm.ss 51 10 0 0.11 0.12
cdl-ex4-race.ss 50 5 0 0.09 0.09
cdl-ex4a-race.ss 50 9 0 0.10 0.08
cdl-ex5-deadlock.ss 42 5 0 0.10 0.10
cdl-ex5a-deadlock.ss 42 9 0 0.08 0.08

ex-fork-join.ss 25 47 22 0.19 0.16

total 10,252 534 455.01 434.30

Fig. 3. Evaluation of our procedures using HIP/SLEEK

why the regression tests were passing even though the solver was reporting the
incorrect answer. Our discovery of bugs on this scale, despite the large bench-
marks developed by Le et al. [27] and Gherghina [17], illustrates the value of
developing certified decision procedures.

Our timing results are reasonable: despite our näıve SMT solver backend and
the difficulties in writing the algorithms in a purely functional style, our tool is
approximately 4.6% faster than Le et al.’s uncertified solver.

5 Related work, future work, and conclusion

Boyland first proposed fractional shares over Q [7]. Subsequently, Bornat et al.
[5] improved the rational model by adding natural counting permissions to reason
about critical sections. Other notable refinements of the rationals are achieved
by Boyland et al. [6], Huisman et al. [23] and Müller et al. [31] that work well on
programs with fork, join and lock. Parkinson showed that Q’s lack of disjointness
caused trouble and proposed modelling shares as subsets of N [33]. Dockins et
al. proposed the tree share model used in the present paper to fix issues with
Parkinson’s model [15]. Hobor et al. were the first to use tree shares in a program
logic [20], followed by Hobor and Gherghina [18] and Villard [38]. Hobor and
Gherghina [21], Villiard [38], and Appel et al. [3] subsequently integrated shares
into program verification tools with various incomplete solvers. Le et al. [27]

14

developed sound and complete procedures to handle tree share constraints but
their correctness proof only justifies the case when there is no disequation.

Future work. We have plans to examine the theory further to support gen-
eral logical formulae (including arbitrary quantifier use) and perhaps monadic
second-order logic. Dockins et al. also define a kind of multiplicative operation
’ between shares whose computability and complexity was first analyzed by
Le et al. [28]. Interestingly, this operator can be used to scale permissions over
arbitrary predicates and thus our decision procedures need to be generalized to
handle constraints that contain both ‘ and ’.

Conclusion. We have used tree shares to model permissions for integration into
program logics. We proposed two decision procedures for tree shares and proved
their correctness in Coq. The two algorithms perform well in practice and have
been integrated into a sizable verification toolset.

References

1. Andrew W. Appel. Efficient verified red-black trees, 2011.
2. Andrew W. Appel, Robert Dockins, and Aquinas Hobor. Mechanized semantic

library, 2009.
3. Andrew W. Appel, Robert Dockins, Aquinas Hobor, Lennart Beringer, Josiah

Dodds, Gordon Stewart, Sandrine Blazy, and Xavier Leroy. Program Logics for
Certified Compilers. Cambridge University Press, 2014.

4. Jesper Bengtson, Jonas Braband Jensen, and Lars Birkedal. Charge! - A framework
for higher-order separation logic in Coq. In ITP, pages 315–331, 2012.

5. Richard Bornat, Cristiano Calcagno, Peter O’H, and Matthew Parkinson. Permis-
sion accounting in separation logic. In POPL, pages 259–270, 2005.

6. Boyland, John Tang, Peter Müller, Malte Schwerhoff, and Alexander J. Summers.
Constraint semantics for abstract read permissions. In FTfJP, pages 2:1–2:6, 2014.

7. John Boyland. Checking interference with fractional permissions. In SAS, pages
55–72, 2003.

8. Cristiano Calcagno, Peter W. O’Hearn, and Hongseok Yang. Local action and
abstract separation logic. In LICS, pages 366–378, 2007.

9. Wei Ngan Chin, Ton Chanh Le, and Shengchao Qin. Automated verification of
countdownlatch, 2017.

10. Adam Chlipala. The bedrock structured programming system: combining genera-
tive metaprogramming and hoare logic in an extensible program verifier. In ICFP,
pages 391–402, 2013.

11. Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and Charles E. Leiserson.
Introduction to Algorithms (3. ed.). MIT Press, 2009.

12. Leonardo de Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In TACAS,
2008.

13. Thomas Dinsdale-Young, Pedro da Rocha Pinto, Kristoffer Just Andersen, and
Lars Birkedal. Caper: Automatic verification for fine-grained concurrency. In
ESOP, pages 420–447, 2017.

14. Thomas Dinsdale-Young, Mike Dodds, Philippa Gardner, Matthew J. Parkinson,
and Viktor Vafeiadis. Concurrent abstract predicates. In ECOOP, pages 504–528,
2010.

15

15. Robert Dockins, Aquinas Hobor, and Andrew W. Appel. A fresh look at separation
algebras and share accounting. In APLAS, pages 161–177, 2009.

16. Jan Fiedor, Zdeněk Letko, João Lourenço, and Tomáš Vojnar. Dynamic validation
of contracts in concurrent code. In EUROCAST, pages 555–564, 2015.

17. Cristian A. Gherghina. Efficiently Verifying Programs with Rich Control Flows.
PhD thesis, National University of Singapore, 2012.

18. Hobor and Cristian Gherghina. Barriers in concurrent separation logic. In ESOP,
pages 276–296, 2011.

19. Aquinas Hobor. Oracle Semantics. PhD thesis, Princeton University, Department
of Computer Science, Princeton, NJ, October 2008.

20. Aquinas Hobor, Andrew W. Appel, and Francesco Zappa Nardelli. Oracle seman-
tics for concurrent separation logic. In ESOP, pages 353–367, 2008.

21. Aquinas Hobor and Cristian Gherghina. Barriers in concurrent separation logic:
Now with tool support! Logical Methods in Computer Science, 8(2), 2012.

22. Jochen Hoenicke, Rupak Majumdar, and Andreas Podelski. Thread modularity at
many levels: A pearl in compositional verification. In POPL, pages 473–485, 2017.

23. Marieke Huisman and Wojciech Mostowski. A symbolic approach to permission
accounting for concurrent reasoning. In ISPDC, pages 165–174, 2015.

24. Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon, Lars
Birkedal, and Derek Dreyer. Iris: Monoids and invariants as an orthogonal basis
for concurrent reasoning. In POPL, pages 637–650, 2015.

25. Bohuslav Křena, Zdeněk Letko, Tomáš Vojnar, and Shmuel Ur. A platform for
search-based testing of concurrent software. In PADTAD, pages 48–58, 2010.

26. Duy-Khanh Le, Wei-Ngan Chin, and Yong Meng Teo. Threads as resource for
concurrency verification. In PEPM, pages 73–84, 2015.

27. Xuan-Bach Le, Cristian Gherghina, and Aquinas Hobor. Decision procedures over
sophisticated fractional permissions. In APLAS, 2012.

28. Xuan-Bach Le, Aquinas Hobor, and Anthony W. Lin. Decidability and complexity
of tree shares formulas. In FSTTCS, 2016.

29. Xuan-Bach Le, Thanh-Toan Nguyen, Wei-Ngan Chin, and Aquinas Ho-
bor. A certified decision procedure for tree shares (extended), 2017.
http://www.comp.nus.edu.sg/~lxbach/certtool/.

30. Wenrui Meng, Fei He, Bow-Yaw Wang, and Qiang Liu. Thread-modular model
checking with iterative refinement. In NFM, pages 237–251, 2012.

31. Peter Müller, Malte Schwerhoff, and Alexander J. Summers. Viper: A verification
infrastructure for permission-based reasoning. In VMCAI, pages 41–62, 2016.

32. Huu Hai Nguyen, Cristina David, Shengchao Qin, and Wei-Ngan Chin. Automated
verification of shape and size properties via separation logic. In VMCAI, pages
251–266, 2007.

33. Matthew Parkinson. Local Reasoning for Java. PhD thesis, University of Cam-
bridge, 2005.

34. Nicholas Pippenger. Pure versus impure LISP. In POPL, pages 104–109, 1996.
35. Ilya Sergey, Aleksandar Nanevski, and Anindya Banerjee. Mechanized verification

of fine-grained concurrent programs. In PLDI, pages 77–87, 2015.
36. Kasper Svendsen and Lars Birkedal. Impredicative concurrent abstract predicates.

In ESOP, pages 149–168, 2014.
37. Aaron Turon, Derek Dreyer, and Lars Birkedal. Unifying refinement and hoare-

style reasoning in a logic for higher-order concurrency. In ICFP, pages 377–390,
2013.

38. Jules Villard. Heaps and Hops. Ph.D. thesis, Laboratoire Spécification et
Vérification, École Normale Supérieure de Cachan, France, February 2011.

16

