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Abstract
Fractional share models are used to reason about how multiple actors share ownership of resources.
We examine the decidability and complexity of reasoning over the “tree share” model of Dockins
et al. using first-order logic, or fragments thereof. We pinpoint a connection between the basic
operations on trees union t, intersection u, and complement � and countable atomless Boolean
algebras, allowing us to obtain decidability with the precise complexity of both first-order and
existential theories over the tree share model with the aforementioned operations. We establish
a connection between the multiplication operation ./ on trees and the theory of word equations,
allowing us to derive the decidability of its existential theory and the undecidability of its full
first-order theory. We prove that the full first-order theory over the model with both the Boolean
operations (t, u, �) and the restricted multiplication operation (./ with constants on the right
hand side) is decidable via an embedding to tree-automatic structures.
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1 Introduction

The state of the art: Fractional shares enable reasoning about shared ownership of
resources between multiple parties, e.g. ownership of memory cells by different threads in a
concurrent program [7]. Threads are then allowed to take actions depending on the amount
of ownership they have, e.g. with full ownership allowing both reading and writing, partial
ownership allowing only reading, and empty ownership allowing nothing. Although rational
numbers are the most obvious model for fractional shares, they are unfortunately not a good
model for realistic program verification because they do not satisfy the so-called “disjointness”
axiom [3], i.e. ∀x, y. x + x = y ⇒ x = y = 0. Dockins et al. proposed a better model
for fractional shares based on binary trees with Boolean leaves [10]. A tree share τ ∈ T is
inductively defined as follows: τ , ◦ | • | τ τ , where ◦ denotes an “empty” leaf while •
a “full” leaf. The tree ◦ is thus the empty share, and • the full share. There are two “half”
shares: ◦ • and • ◦, and four “quarter” shares, beginning with

• ◦ ◦
. It is a feature

that the two half shares in T are distinct, as compared to the two half shares in Q, 0.5 and 0.5,
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XX:2 Decidability and Complexity of Tree Share Formulas

which are of course equal. The ability to represent distinct partial shares of “equal measure”
is closely related to why the disjointness axiom holds. The basic operations for combining
trees are union t, intersection u, and complement �; these will be defined formally in §2
but to a first approximation they are all defined leafwise, e.g. ◦ • t

• ◦ ◦
=

• ◦ •
.

A number of program logics incorporate tree shares to model fractional ownership [11, 12,
29, 3], but it has been unclear how to reason about them automatically, which has posed a
significant barrier to their use in verification tools. One reason for this barrier is the lack of
foundational results regarding decidability and complexity of theories over tree shares. The
only published result of this kind proves the decidability of entailment between systems of
equations over tree shares, a less-expressive format than general first-order formulae [19].

In addition to union, intersection, and complement, Dockins et al. defined a “multiplica-
tion” operator on tree shares, written τ1 ./ τ2 [10]. The basic idea is that you take each • leaf
in τ1 and replace it with a full copy of τ2, e.g.

• ◦ ◦ •
./ ◦ • =

◦ • ◦ ◦ ◦ •

.

Dockins et al. showed that ./ could be used to split any nonempty tree τ into two nonempty
trees that joined together to equal the original since ∀τ. τ = (τ ./ • ◦) t (τ ./ ◦ •). More
generally, the ./ operator can be used as a kind of “scoping” or “gluing” operator to combine
different uses of tree shares together. Although ./ has been used in metatheory [3], it has
never been used in an automated tool because its decidability properties were unclear.

Contributions: In this paper, we provide the first systematic study of decidability and
complexity of theories over the tree share model.

First (§3), we show that the tree share modelM , (u,t,�, ◦, •) is a Countable Atomless
Boolean Algebra (CABA), which are known to be unique up to isomorphism [28]. The
first-order theory over CABAs is known to be decidable and, in fact, complete for the class
STA(∗, 2cn, n) of problems solvable by an alternating Turing machine with n alternations in
exponential time [17], the same complexity class as the first-order theory over (R,+, 0, 1) [4].
In addition, the full existential theory over CABAs is known to be NP-complete [24]. Our
connection shows that these decidability and complexity results transfer toM.

We then (§4) proceed to decision problems over the tree shares with the multiplication
operator ./. Our main result here is that the tree share model S , (T, ./) that only allows ./
(i.e. but not t, u, and �) is—in a technical sense—“equivalent” to the logical structure of
words with the concatenation operator. Makanin [20] showed that reasoning about a single
equation over this structure (a.k.a. word equations) is decidable. More complex problems
are known to be reducible to this basic case in polynomial-time, e.g. the existential theory
over the structure [8]. Accordingly, we deduce that the existential theory over S is decidable
in polynomial space but NP-hard, whereas the first-order theory over S is undecidable.

Finally (§5), we consider restrictions on ./ that admit a decidable theory. We define
the family of one-argument functions indexed by tree constants that applies bowtie on
the right-hand side ./�, i.e. ./τ (τ ′) , τ ′ ./ τ . We prove that the combined theory of
T , (T,u,t,�, ./�) has an embedding into tree-automatic structures. Since the first-
order theory of tree-automatic structures is decidable [6], we obtain the decidability of the
first-order theory of this extension of the tree share model with ./�. This suggests the
potential application of powerful heuristics for automata (e.g. antichain and simulation [1])
for providing a practical decision procedure for the tree share model.
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2 Formal preliminaries: the Tree Share model T of Dockins et al. [10]

Here we summarize additional details of tree shares and their associated theory from [10].
Canonical forms. In the first paragraph of §1 we presented the first quarter share as

• ◦ ◦
instead of e.g.

• ◦ ◦ ◦
. This is deliberate: the second choice is not a valid

share because the tree is not in canonical form. A tree is in canonical form when it is in its
most compact representation under the inductively-defined equivalence relation ∼=:

◦ ∼= ◦ • ∼= • ◦ ∼= ◦ ◦ • ∼= • •

τ1 ∼= τ ′1 τ2 ∼= τ ′2

τ1 τ2
∼=

τ ′1 τ ′2

As we will see, operations on tree shares sometimes need to fold/unfold trees to/from canonical
form, a practice we will indicate using the symbol ∼=. Canonicality is needed to guarantee
some of the algebraic properties of tree shares; managing it requires a little care in the proofs
but does not pose any fundamental difficulties to the overall theory.
Boolean algebra operations. The connectives t and u first unfold both trees to the
same shape; then calculate leafwise using the rules ◦ t τ = τ t ◦ = τ , • t τ = τ t • = •,
◦ u τ = τ u ◦ = ◦, and • u τ = τ u • = τ ; and finally refold back into canonical form, e.g:

• ◦ ◦
t

◦ • • ◦
∼=

• ◦ ◦ ◦
t

◦ • • ◦
=

• • • ◦
∼= • • ◦

• ◦ ◦
u

◦ • • ◦
∼=

• ◦ ◦ ◦
u

◦ • • ◦
=

◦ ◦ ◦ ◦
∼= ◦

Complementation is simpler, since flipping leaves between ◦ and • does not affect whether a
tree is in canonical form, e.g.:

• ◦ ◦
=

◦ • •
. Using these definitions we get all of

the usual properties for Boolean algebras, e.g. τ1 u τ2 = τ1 t τ2. Moreover, we can define a
partial ordering between trees using intersection in the usual way, i.e. τ1 v τ2 , τ1u τ2 = τ1.
We can enjoy a strict partial order as well: τ1 @ τ2 , τ1 v τ2 ∧ τ1 6= τ2.
Properties of tree multiplication ./. Since it is nonstandard, the “tree multiplication”
operator ./ deserves some additional attention. The good news first: ./ is associative, has an
identity •, and is injective for non-◦ elements, i.e. S+ , (T \ {◦}, ./) forms a cancellative
monoid. Somewhat unsurprisingly, multiplication by the “additive identity” ◦ reduces to ◦.
Unfortunately, ./ is not commutative (• ◦ ./ ◦ • =

◦ • ◦
6=

◦ • ◦
= ◦ • ./ • ◦),

although we do enjoy a distributive property over t and u on the right hand side. Accordingly:

I Lemma 1 (Properties of ./).

Associativity : τ1 ./ (τ2 ./ τ3) = (τ1 ./ τ2) ./ τ3 (1)
Identity element : τ ./ • = • ./ τ = τ (2)
Zero element : τ ./ ◦ = ◦ ./ τ = ◦ (3)
Left cancellation : τ 6= ◦ ⇒ τ ./ τ1 = τ ./ τ2 ⇒ τ1 = τ2 (4)
Right cancellation : τ 6= ◦ ⇒ τ1 ./ τ = τ2 ./ τ ⇒ τ1 = τ2 (5)

(6)

Typical use of T in program verification. A standard way to use fractional shares in
program verification is by modifying the standard maps-to predicate of separation logic to

FSTTCS 2016
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take a share as an additional argument. The predicate x π7→ y then means that the heap has
a cell at address x, which is owned with nonempty fraction π 6= ◦ and whose value is y. We
use π here because we often use share variables rather than concrete trees τ .

To combine divided fractional ownership stakes back together it is traditional to use the
“join” relation, written τ1 ⊕ τ2 = τ3. The join relation is defined in turn using the primitive
Boolean algebra operators: τ1⊕ τ2 = τ3 , τ1t τ2 = τ3∧ τ1u τ2 = ◦. In other words, the join
relation is a kind of disjoint union; it is partial because e.g. • ⊕ • is undefined. Critically for
verification ⊕ does satisfy the disjointness axiom: ∀x, y. x⊕ x = y ⇒ x = y = ◦. Using ⊕
we can state the following relationship between the spatial conjunction ∗ and the underlying
Boolean operators as x π17→ y ∗ x π27→ z a` y = z ∧ x π1⊕π27−→ y ( using a` for bientailment).

It is common that we want to “split” a share π into sub-shares π1, π2 so that the permission
can be transferred. This can be done withinM , (u,t,�, ◦, •) using the following rule:

π 6= ◦
x

π7→ v a` ∃π1, π2. (x π17→ v ∗ x π27→ v) ∧ π1 ⊕ π2 = π ∧ π1 6= ◦ ∧ π2 6= ◦
SplitJoin

This rule has some drawbacks. The most obvious is the lengthy size of the entailment’s
consequent, even though we only split π into two pieces. Second, existential quantifiers are
expensive in program verification since they tend to increase the size of the proof obligations
and here we introduce two of them. Third, we have no control over what the shares π1 and
π2 are—that is, π1 and π2 are not uniquely determined. Moreover, they are indistinguishable,
which makes it difficult to assign different permitted actions for them.

On the other hand, each of these issues can be solved nicely using ./ due to its right
distributivity over (u,t), and thus over ⊕, yielding the following rules:

τ1 ⊕ . . .⊕ τn = τ π 6= ◦
n∧
i=1

τi 6= ◦

x
π./τ7−→ v a` x

π./τ17−→ v ∗ . . . ∗ x π./τn7−→ v
SplitJoin ./ (7)

3 Tree Shares are a model for Countable Atomless Boolean Algebras

In this section, we pinpoint the fact thatM = (u,t,�, ◦, •) is a model for Countable Atomless
Boolean Algebra (CABA). Let B = (∩,∪,�,0,1) be a Boolean Algebra (BA), we define a
partial order ⊆ on B (v forM, resp.): a1 ⊆ a2 , a1∩a2 = 0 and a1 ⊂ a2 , a1 ⊆ a2∧a2 6⊆ a1.
B is atomless if ∀a. 0 ⊂ a ⇒ ∃a′. 0 ⊂ a′ ⊂ a. B is countable if its domain is countable.
Dockins et al. [10] proved thatM is a model for BA where 0 , ◦, 1 , •, t , ∪, u , ∩. The
atomless property can be derived from the Infinite Splitability property of tree shares [19]:
let a A ◦ and a1, a2 6= ◦ such that a1 ⊕ a2 = a. This implies a1 t a2 = a ∧ a1 u a2 = ◦. By
Stone’s representation theorem each BA is isomorphic to a BA of powerset, thus a1 t a2 = a

implies a1 ⊆ a and a2 ⊆ a. Suppose that a1 = a then a2 u a = 0 which is a contradiction
because 0 @ a2 @ a. As a result, a1 6= a and thus a1 @ a. The proof that T is countable is
achieved by enumerating T in the ascending order of tree height |τ | using the following total
strict order ≺:

◦ ≺ •
|τ1| < |τ2|
τ1 ≺ τ2

|
τ1 τ ′1

| = |
τ2 τ ′2

| τ1 ≺ τ2

τ1 τ ′1
≺
τ2 τ ′2

|
τ τ1

| = |
τ τ2

| τ1 ≺ τ2

τ τ1
≺
τ τ2

It is known that there is a unique model for CABA up to isomorphism [28], so we can
reason about the complexity of M in terms of CABA. Let STA(f(n), g(n), h(n)) be the
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class of sets accepted by alternating Turing machines which use at most f(n) space, g(n)
time and h(n) alternations between universal and existential states on a given input of
length n. Any field in the description can be replaced with symbol ∗ to indicate no bound is
required. Kozen [17] proved that the elementary theory of infinite BAs is ≤log-complete for the
Berman complexity class

⋃
c<ω STA(∗, 2cn, n), which lies between the class of deterministic

exponential space and non-deterministic exponential space.
We now investigate the complexity of an important sub-theory ofM, namely the existential

theory. Basically, this sub-theory includes all valid sentences whose prenex normal form
contains only existential quantifiers. Its counterpart is the universal theory in which all the
quantifiers are universal. A result by Marriott et al. [24] showed that the existential theory
and universal theory for infinite BAs are in NP-complete and co-NP-complete respectively.

4 Decidability of general multiplication ./ over Tree Shares

In this section, we will prove the following results about S = (T, ./):

I Theorem 2 (Complexity of S).

1. The existential theory of S is decidable in PSPACE.
2. The existential theory of S is NP-hard.
3. The general first-order theory over S is undecidable.

The proof of Theorem 2 largely rests on the identical conclusions for the key subtheory
S+ , (T+, ./), where T+ , T \ {◦} are the “positive trees” obtained by removing the “zero
element” ◦ from T:

I Lemma 3 (Complexity of S+).

1. The existential theory of S+ is decidable in PSPACE.
2. The existential theory of S+ is NP-hard.
3. The general first-order theory over S+ is undecidable.

We will prove Lemma 3 shortly, but first let us use it to polish off Theorem 2:

Proof of Theorem 2. We take each part in turn as follows:
1. Represent the set of variables V = {x1, . . . , xn} in a given formula F of S as a n-length

bitvector. We can enumerate through all possibilities P1, . . . , P2n for this vector using
linear space and binary addition. For each possibility Pj , variable xi’s bit is 0 to indicate
that xi must be ◦ and 1 when xi must be non-◦. For each xk that is marked as ◦, we
substitute ◦ for xk in F to reach Fj and simplify using the rules

π1 ./ ◦ = π2

π2 = ◦
◦ ./ π1 = π2

π2 = ◦
π1 ./ π2 = ◦

π1 = ◦ ∨ π2 = ◦

π1 ./ ◦ 6= π2

π2 6= ◦
◦ ./ π1 6= π2

π2 6= ◦
π1 ./ π2 6= ◦

π1 6= ◦ ∧ π2 6= ◦

We can then just check to make sure that the resulting “fresh” (in)equalities are consistent
with the current value of the bitvector Pj . If not, we have reached a contradiction and
can proceed to the next bitvector Pj+1. If so, then after removing the trivial equalities
(e.g. ◦ = ◦) from Fj we are left with an equivalent formula F+

j which is in S+, so

FSTTCS 2016
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by Lemma 3.1 we can check if Fj is satisfiable in PSPACE. If so, we know that Fj is
satisfiable, and thus that F is satisfiable. If not, we proceed to the next bitvector Pj+1;
if all Fj are unsatisfiable then F is unsatisfiable.

2. By Lemma 3.2 it is sufficient to reduce a formula F+ in S+ to S. Let V be the set of

variables in F+ and define F , F+ ∧
( ∧
x∈V

x 6= ◦
)
; note that we construct F in linear

time from |F+|. F is satisfiable in S if and only if F+ is satisfiable in S+, so we are done.
3. Any extension of an undecidable theory is also undecidable; by Lemma 3.3 we are done.

J

4.1 Word equations
To prove Lemma 3 we will show that S+ is isomorphic to the theory of word equations. Let
us recall this theory. Let A = {a1, a2, . . .} be a finite set of letters and • be a concatenation
operator that combines letters into words. Let A∗ be the Kleene closure of A using •. We
define a model for the alphabet A, written WA as the pair (A∗, •). Now let V = {v1, v2, . . .}
be a finite set of variables, and w ∈W , (A ∪ V )∗ a finitely generated word that includes
both letters and variables. We extend a word context ρ : V → A∗ to the domain A ∪ V by
mapping constants to themselves, and further to the domain W by replacing each letter
within a word with its value in ρ. A word equation EW is a pair of words (w1, w2) ∈W×W.
We say that ρ is a solution of EW if ρ(w1) = ρ(w2).

The satisfiability of word equation asks whether a word equation EW has a solution ρ,
denoted SATW(EW). Makanin proposed a complete treatment to this problem in a series
of papers [20, 21, 22] but his method was highly intractable (quadruple-exponential non-
deterministic time [16]). Substantial research since has improved this bound, e.g. [2, 13].
The best known complexity bound for this problem is PSPACE and NP-hard [25, 26] and it
is hypothesized to be NP-complete. Importantly for our present result, the existential theory
over word equations is known to be reducible to SATW in polynomial time [8]. Finally, the
first order theory over W is known to be undecidable [23, 18].
Infinite alphabets. To define our isomorphism from T+ to A∗ it will be convenient if
the alphabet A can be countably infinite. Accordingly, we must reduce word equations
over an infinite alphabet to the standard finite case. Let σ : W → P(A) be the function
that extracts the set of letters from a word w, e.g. σ(v1a1a3v2) = {a1, a3} and extend σ to
W×W by σ(w1, w2) = σ(w1) ∪ σ(w2). Let φ : W× P(A)→W be the projection function
that takes a word w and a set of letters B ⊆ A and removes all letters in w that are not
in B, e.g. φ(v1a1a3v2, {a1, a2}) = v1a1v2. It is not hard to prove that φ with fixed B is an
homomorphism over WA. Now we are ready to state and prove the extension to infinite
alphabets:

I Lemma 4 (Infinite alphabet word equations). Let A be infinite and EW = (w1, w2) a word
equation over A. EW is satisfiable in WA iff EW is satisfiable in Wσ(EW).

Proof. ⇐ is trivial. Let ρ : V → A∗ be a solution of EW over A and ρ′ = λv. φ(ρ(v), σ(EW)).
Notice ρ′ preserves all the letters in EW and ρ(w1) = ρ(w2) implies ρ′(w1) = ρ′(w2). Thus ρ′
is a new solution of EW that only contains letters from σ(EW). J

4.2 Finding an infinite alphabet inside T+

Since ./ is a kind of multiplication operation, and the fundamental building blocks of (N,×)
are prime numbers, it is natural to wonder whether there is an analogue on trees. There is:
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I Definition 5 (Prime trees). τ ∈ T+\{•} is prime if ∀τ1, τ2. τ = τ1 ./ τ2 ⇒ (τ1 = •∨τ2 = •).
Furthermore, let Prime(τ) indicate τ is prime and Tp be the set of all prime trees.

Examples of tree primes are ◦ • and
• ◦ • ◦

. On the other hand, the tree
◦ • ◦

is not prime since it can be factored as • ◦ ./ ◦ •. Prime trees have many nice properties:

I Lemma 6 (Properties of prime trees).

1. There are countably infinitely many prime trees.
2. Let τ1, τ

′
1, τ2, τ

′
2 ∈ Tp, τ1 ./ τ2 = τ ′1 ./ τ

′
2 iff τ1 = τ ′1 and τ2 = τ ′2.

3. Given two prime tree sequences S1 = τ1
1 , . . . , τ

k1
1 and S2 = τ1

2 , . . . , τ
k2
2 , S1 = S2 iff their

./ products are equal: ./k1
i=1 τ

i
1 = ./k2

i=1 τ
i
2 ⇔ (k1 = k2

∧k1
i=1 τ

i
1 = τ i2).

To prove Lemma 6 we must define the notation |τ | to be the height of τ (with |◦| = |•| = 0
and counting up from there). Given this notation it is simple to define the set of all trees up
to height n, written Tn. We will also need the following technical lemma which allows us to
split an application of bowtie τ2 ./ τ3 to children of τ2:

I Lemma 7 (Split for ./). Let τ1, τ2, τ3, τ
l
1, τ

r
1 ∈ T+ and τ1 = τ2 ./ τ3 ∧ τ1 =

τ l
1 τr

1
then

either (1) τ2 = • ∧ τ1 = τ3 or (2) ∃τ l2, τ r2 . τ2 =
τ l

2 τr
2
∧ τ l1 = τ l2 ./ τ3 ∧ τ r1 = τ r2 ./ τ3.

Proof. The case τ2 = • is trivial. Otherwise, there exists τ l2, τ r2 ∈ T such that τ2 =
τ l

2 τr
2
.

By definition of ./, τ1 = τ2 ./ τ3 is computed by replacing each leaf • in τ2 with τ3,
which is equivalent to replace each leaf • in τ l2 and τ r2 with τ3. Thus, τ l1 = τ l2 ./ τ3 and
τ r1 = τ r2 ./ τ3. J

Proof of Lemma 6.
1. We construct an infinite sequence S of prime trees: let p1 , • ◦, pj , pj−1 •, i.e.

S ,

• ◦,
• ◦ •

,

• ◦ •
•
, . . .


It is immediate that p1 is prime. To prove that pi is prime for i > 1, we proceed as
follows. Suppose pi = τ1 ./ τ2 and neither τ1 nor τ2 is •. The right subtree of each pi
is just • and by the definition of ./ must contain a copy of τ2, i.e. τ2 = •, so we have a
contradiction and pi is prime.

2. We prove by induction on the height of τ1, τ
′
1. The base case T0 is easy to verify. Assume

it holds for Tk and τ1, τ
′
1 ∈ Tk+1. Let τ1 =

τ l
1 τr

1
, τ ′1 =

τ l′
1 τr′

1
then by Lemma

7, we derive τ l1 ./ τ2 = τ l
′

1 ./ τ ′2, τ
r
1 ./ τ2 = τ r

′

1 ./ τ ′2. By our induction hypothesis,
τ l1 = τ l

′

1 , τ
r
1 = τ r

′

1 , τ2 = τ ′2. Consequently, τ1 = τ ′1.
3. This is a simple generalization of property 2. J

Of course the real fun with prime numbers is the the unique factorization theorem.
Since ./ is not commutative we get a stronger version of the traditional theorem:

I Lemma 8 (Unique representation of S+). For each τ ∈ T+\{•}, there exists a unique
sequence τ1, ..., τn ∈ Tp such that τ = ./ni=1 τi. Each τi is called a prime factor of τ .

FSTTCS 2016
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Proof. We prove by induction on the height of τ . The base case T1 is trivial. Assume it
holds for Tk and let τ ∈ Tk+1. If τ is prime then we are done. Otherwise, let τ1, τ2 ∈ Tk\{•}
and τ = τ1 ./ τ2. By our induction hypothesis, there are 2 sequences τ1

1 , ..., τ
1
k1
∈ Tp and

τ2
1 , ..., τ

2
k2
∈ Tp such that τ1 = ./k1

i=1 τ
1
i and τ2 = ./k2

i=1 τ
2
i and thus τ = (./k1

i=1 τ
1
i ) ./ (./k2

i=1 τ
2
i ).

The uniqueness is a consequence of property 3 from Lemma 6. J

I Corollary 9 (Basis of S+). Tp ∪{•} is a basis of S+, i.e. the closure of Tp over ./ together
with • is T+. Furthermore, it is the smallest basis: if B is a basis of S+ then Tp ∪ {•} ⊆ B.

Accordingly, we will use Tp as our “infinite alphabet” in our isomorphism.

4.3 Connecting Tree Shares to Word Equations
We are ready to make the central connection needed for Lemma 3:

I Lemma 10. (T+, ./) is isomorphic to (T∗p, •)

Proof. Let f : T+ → T∗p be defined as follows. First, map the identity element • to the empty
word ε and then for each prime tree τp ∈ T+ map τp to itself. Finally, for each composite
τ ∈ T+ map τ to exactly the concatenation of its (unique) prime factors.

We now wish to prove that for any τ1 and τ2, f(τ1 ./ τ2) = f(τ1) • f(τ1). Let us consider
the easy cases first. If τ1 = • then f(τ1 ./ τ2) = f(τ2) = ε • f(τ2) = f(τ1) • f(τ2). The
situation is symmetric when τ2 = •. Now let us consider the case when neither τ1 nor τ2 is •.
Let p1, . . . , pi be the unique prime factors of τ1 and p′1, . . . , p′j be the unique prime factors
of τ2. By Lemma 8, p1, . . . , pi, p

′
1, . . . , p

′
j are exactly the unique prime factors of τ1 ./ τ2, so:

f(τ1 ./ τ2) = f(p1 ./ · · · ./ pi ./ p′1 ./ · · · ./ p′j) = p1 • · · · • pi • p′1 • · · · • p′j =
(p1 • · · · • pi) • (p′1 • · · · • p′j) = f(τ1) • f(τ2)

To prove f is surjective, let w ∈ T∗p be the concatenation of primes p1 • · · · • pi; then by
the definition f(p1 ./ · · · ./ pi) = w. To prove f is injective, suppose f(τ1) = f(τ2). Let
p1, . . . pi be the prime factors of τ1 and p′1, . . . p′j be the prime factors of τ2. Accordingly we
know that p1 • · · · • pi = p′1 • · · · • p′j , and since equality over words can only occur if the words
have the same length and have the same letters, we know i = j and pk = p′k for all k. J

I Corollary 11 (Equations over Positive Tree Shares are Word Equations). Equations ET+ over
(T+, ./) contain both tree constants τ ∈ T+ and variables v ∈ V ; we can map these to word
equations EW over (T∗p, •) by mapping variables to themselves, constants to the concatenation
of their prime factors, and multiplication ./ to concatenation •. The resulting system is
equivalent, i.e. if ρ : V → T+ satisfies ET+ then f ◦ ρ satisfies EW, where ◦ in this case
means functional composition and f is the isomorphism constructed in Lemma 10.

We are now ready to start tackling Lemma 3. We start with the simplest:

Proof of Lemma 3.3. As previously mentioned, the first order theory over word equations
is known to be undecidable [23, 18]. By Lemma 10 we know that this theory is isomorphic to
the first order theory over tree shares with ./, which accordingly must be undecidable. J

To show Lemma 3.1 we need to know that tree factorization can be done within PSPACE.
In fact we can do much better:

I Lemma 12 (Factorization). Factoring an arbitrary positive tree share τ is in P.
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Proof. Let S(τ) be the set of all subtrees of τ and Sn(τ) ⊂ S(τ) be the set of all subtrees
of τ with height exactly n. S(τ) can be computed recursively: S(◦) = {◦}, S(•) = {•},
S(
τ1 τ2

) = S(τ1) ∪ S(τ2) ∪ {
τ1 τ2

}. If τ = τ1 ./ τ2 ({τ1, τ2} ⊂ T+\{•}), then there exists

n ∈ N such that Sn(τ) = {τ2}, that is, S|τ2|(τ) is exactly the singleton set {τ2}. Additionally,
S(τ) =

⋃|τ |
i=0 Si(τ).

Thus we can find all the prime factors of τ (which is inspired from the well-known sieve
of Eratosthenes) as follows: first we compute S(τ) and partition it into S0(τ), . . . ,S|τ |(τ).
Let i ∈ N be the smallest number such that Si(τ) is the singleton set {τ1} for some τ1 ∈ T
(note that i must be larger than 0 since S0(τ) = {◦, •}). If i = |τ | then τ itself is a prime,
otherwise, we replace all subtrees τ1 of τ with • and call the new tree τ ′. If all the “old” •
leaves of τ are replaced and τ ′ is in canonical form then τ = τ ′ ./ τ1, τ1 is a prime factor
of τ , and we can repeat the process with τ ′ to find the next prime factor. Otherwise, we
consider the next singleton set Sj(τ).

If τ has n leaves than its description requires O(n) bits and the time to compute S(τ) is
O(n). Note that |Sk(τ)| ≤ n

k+1 because there are at least k + 1 leaves in a tree of height k.
Therefore, the number of subtrees from height 1 to n is at most Σni=1

n
i+1 ≤ n

2. Computing
the height of a subtree τ ′ of τ requires O(n), thus the time to partition S(τ) is O(n3). The
number of times we need to restart the process is O(n2). Consequently, the time for tree
factorization is O(n5), polynomial in the description of τ (more efficient solutions exist). J

Tree factorization is fundamentally simpler than integer factorization since the representation
of a tree already contains the descriptions of all of its tree factors. In contrast, the connection
between the representation of a number and the representation of its prime factors is vague:
e.g. among the 24 factors of 74,611,647 are 333 (which does not appear at all in the
representation of the original) and 8,290,183 (which only shares a single 1 with the original).

Proof of Lemma 3.1. We take the tree shares and factor them using Lemma 12 and then
construct the isomorphic system of word equations using the calculated prime factors as
the alphabet using Corollary 11. As mentioned, the best known complexity bound for the
existential word equation problem is PSPACE [25, 26]. J

For Lemma 3.2 we need one final fact:

I Lemma 13 (Existence of small primes). For any n (represented in unary) we can find a
length-n sequence of tree primes S in polynomial time of n.

Proof. Consider the sequence S from Lemma 6: the description of pi is only a constant size
larger than the description of pi−1 so the description of S is quadratic in n. J

Proof of Lemma 3.2. Suppose we have an arbitrary problem Q in NP. We can reduce Q
to word equations in polynomial time [25, 26]. We then use Lemma 13 to construct a set
of primes the size of the number of alphabet letters that appear in the equations and map
each letter in the word alphabet to a distinct prime, creating a set of word equations over
T∗p. Since the representation of the constants does not affect the computational properties of
the theory, we can conclude that T+ is NP-hard. J

5 A reduction to Tree Automatic Structures

Theorem 2 shows that the first order theory (FO) over S is undecidable, so of course any
extension of S—e.g. with (u,t,�)—also has an undecidable FO. However, if we restrict the
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form of ./-equations to be π1 ./ τ = π2 where τ ∈ T, then the FO of S is decidable because
the relation is tree-automatic. This type of restriction is inspired by Jain et al.’s concept of
semi-automatic structures [14], in which relations are restricted so that all input arguments
are fixed constants except for one argument which is a variable. As a result, certain relations
become automatic, e.g. multiplication in unary language.

Let τ./ : T→ T and ./τ : T→ T be the left and right restricted form of ./ with respect
to τ ∈ T, i.e. τ./(τ1) , τ ./ τ1 and ./τ (τ1) , τ1 ./ τ . We will show T , (T,u,t,�, ./�),
where ./� denotes the family of all right-restricted forms of ./ indexed by tree constants, is
tree-automatic by constructing bottom-up tree automata that recognize the domain T and
the relations in T :

I Theorem 14 (Decidability of (T,u,t,�, ./�)). T is tree-automatic. As a result, the
first-order theory of T is decidable.

As indicated by equation (7) (from §2), one use for ./ is to split/join ownership of maps-to
predicates in separation logic. Here the splitting/joining occurs on the right-hand side of
the ./. Moreover, many functions need to divide their ownership only a finite number of
times before e.g. calling other functions or indeed themselves recursively. This is because
the program text of functions is finite. Accordingly, we believe that T is worthy of attention.

5.1 Tree automatic structures
Before proving Theorem 14, we recall the definition of tree automatic structures [27, 15].
Tree automaton. A bottom up tree automaton is a 4-tuple A = (Q,F,Qf ,∆) where Q is
the set of states, F is the ranked alphabet, Qf ⊂ Q is the set of accepting states and ∆ is
the set of transitions f(q1(v1), ..., qn(vn))→ qn+1(f(v1, ..., vn)) where f ∈ F is a n-ary letter,
vi ∈ V is a variable and qj ∈ Q. Let T be a tree constructed from F then A runs on T by
applying ∆ at each leaf of T spontaneously and proceeding upward. A accepts T if the state
associated with the root of T is in Qf . We will put a temporary superscript number (n)
above each letter in the definition of F to indicate its arity, i.e. f (n) means f is n-ary. For
instance, the ranked alphabet for the tree domain T is F = {◦(0), •(0),Node(2)}.
Tree automatic structures. Let R ⊂ Dk be a k-ary tree relation on some tree domain
D, its convolution set is constructed by overlapping all k trees of each element in R to
form a single tree. As trees can have different shapes and thus their convolution con-
tains “holes”, we fill the holes with a special nullary character �(0) that is not in F , e.g.
(Node(a1, a2), b,Node(c1, c2)) 7→ [Node, b,Node]([a1, �, c1], [a2, �, c2]). As a result, if FD is the
ranked alphabet of D then (FD ∪ {�})k is the ranked alphabet for Dk and the arity of each
convolution letter is the maximal arity among its letter components. R is tree-automatic if
its convolution set is accepted by a tree automaton. Generally, a structure (D,R1, . . . ,Rn)
is tree-automatic if its domain D and each of its relations Ri are tree-automatic. We restate
a well-known decidability result for tree automatic structures:

I Lemma 15 ([5, 6]). The first-order theory of a tree automatic structures is decidable.

5.2 Tree automata construction for T
Construction of AT. For the domain T, it suffices to check the canonical form. Let
AT = (QT, FT, QT

f ,∆T) such that QT = {q, q◦, q•}, FT = F , QT
f = {q} and the transition

relation ∆T contains the following:
◦ 7→ q(◦) and • 7→ q(•)
Node(q1(v1), q2(v2)) 7→ q(Node(v1, v2)) where (q1, q2) ∈ {(q◦, q•), (q•, q◦), (q, q)}
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Construction of A�. From now on, we assume that the input trees are in domain T,
which will make other constructions more pleasant. The automaton A� for complement � is
easy: we need to verify the opposite values leaf-wise between two trees . To be precise, let
(Q�, F�, Q�

f ,∆�) such that Q� = Q�
f = {q}, F� = (F ∪ {�})2 and ∆� is defined as:

[•, ◦] 7→ q([•, ◦]) and [◦, •] 7→ q([◦, •])
[Node,Node](q(v1), q(v2)) 7→ q([Node,Node](v1, v2))}

Construction of At and Au. At and Au are more sophisticated as trees can have different
shapes and thus are inapplicable for leaf-wise comparison. For instance, the convolution of
the relation ◦ • t • = • is [Node, •, •]([◦, �, �], [•, �, �]). When we proceed upward, the leaf
values of the second and third tree are initially unknown (denoted by �) but later recognized
as •. The trick to build the automaton is by guessing: when moving bottom-up, the states
of the automaton record the set of all possible values for the unknown leaves and later check
whether the observed values belong to the guessing set. When proceeding upward, if two
guessing sets meet at a certain step, they are unified into a single guessing set: first we
compute their intersection and then unify it with the observed values at the current node.
In details, we define Ft = (F ∪ {�})3, Qt = {qS | S ⊆ {(τ1, τ2, τ3) | τi ∈ {◦, •, ?}}} and
Qtf = {q{(?,?,?)}} where ? indicates the value was already seen. Let D = {◦, •, �,Node, ?}
and φ : D ×D → {?, �} be the unit unification:

φ(Node, ?) = φ(◦, ◦) = φ(•, •) = ?, φ(�, �) = �
φ(τ1, τ2) is undefined otherwise

We extend φ to φ′ : D3 × P(D3) → P(D3) to handle the convolution form of t:
φ′((τ1, τ2, τ3), S) = {(τ ′1, τ ′2, τ ′3) | ∃k1, k2, k3.((k1, k2, k3) ∈ S

∧3
i=1 φ(τi, ki) = τ ′i)}. Finally,

the transition relation is defined to be ∆t = Sg ∪ Su where Sg contains all guessing rules at
leaf level for t and Su is the transition part for unification that contains relations of the form
[τ1, τ2, τ3](qS1(v1), qS2(v2)) 7→ qS([τ1, τ2, τ3](v1, v2)) such that S = φ′((τ1, τ2, τ3), S1 ∩ S2).
Similarly, the automaton for u can be constructed by modifying Sg. For demonstration,
consider ◦ • t • = • whose convolution [Node, •, •]([◦, �, �], [•, �, �]) has the following run:

[◦, �, �] 7→ qS1([◦, �, �]) where S1 = {(?, •, •), (?, ◦, ◦)}
[•, �, �] 7→ qS2([•, �, �]) where S2 = {(?, •, •), (?, ◦, •)}
As S = S1 ∩ S2 = {(?, •, •)} and φ′((Node, •, •), S) = {(?, ?, ?)}, we have:
[Node, •, •](qS1([◦, �, �]), qS2([•, �, �])) 7→ q{(?,?,?)}([Node, •, •]([◦, �, �], [•, �, �]))

Construction of A./τ . Next, we give the description of bottom-up tree automaton A./τ
that recognizes ./τ . Let S : T→ P(T) be the function that extracts all subtrees: S(•) = {•},
S(◦) = {◦}, S(

τ1 τ2
) = {

τ1 τ2
} ∪ S(τ1) ∪ S(τ2). The ranked alphabet for A./τ is F ./τ =

(F ∪ {�})2. The state space for A./τ is Q./τ = {qτ ′ | τ ′ ∈ S(τ)} ∪ {qf} and Q./τf = {qf}.
W.l.o.g., we assume that τ 6∈ {◦, •} as those cases can be trivially reduced to equalities,
which is a special case of t: τ1 = τ2 ⇔ τ1 t ◦ = τ2. The transition relation ∆./τ is defined as
follows:

a1. [◦, ◦] 7→ qf ([◦, ◦])
a2. [�, τ ′] 7→ qτ ′([�, τ ′]) if τ ′ ∈ S(τ)
a3. [�,Node](qτ1(v1), qτ2(v2)) 7→ qτ3([�,Node](v1, v2)) if τ3 =

τ1 τ2
∈ S(τ) and τ3 6= τ

b1. [•,Node](qτ1(v1), qτ2(v2)) 7→ qf ([•,Node](v1, v2)) if τ =
τ1 τ2

b2. [Node,Node](qf (v1), qf (v2)) 7→ qf ([Node,Node](v1, v2))

FSTTCS 2016
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Briefly speaking, we traverse upward and check whether τ is a subtree of the second tree
(a1−a3). When • is seen from the first tree (b1), we check whether the two trees have similar
shape (b2).
I Remark. As we are about to prove, the other relation τ./ is not tree-automatic in this
representation. We leave an open question whether there exists a representation in which
both ./τ and τ./ are automatic i.e. whether ./ is semi-automatic.

I Proposition 16 (τ./). In the current representation of tree shares, there exists infinitely
many τ such that τ./ is not tree-automatic.

First, we recall the Pumping Lemma for tree automata:

I Definition 17 (Term, context and substitution [9]). Let A = (Q,F ,Qf ,∆) be a tree
automaton and V the set of variables. We define T (F , V ) the set of all tree terms derived
from F ∪V and T (F , ∅) is the set of ground terms. A term t is linear if each variable appears
at most once in t. A context C is a linear term of T (F , V ) and C(F) denotes the set of all
contexts with single variable. A context is trivial if it is reduced to a variable. Let C[t]
be the substitution of C ∈ C(F) by replacing the variable in C with the term t. We define
C0[t] = v where v is the variable in C, C1[t] = C[t] and Cn+1[t] = C[Cn[t]].

I Lemma 18 (Pumping Lemma for Tree Automata [9]). Let L be the set of all ground terms
recognizable by a tree automaton. There is a constant k ∈ N+ satisfying the following
condition: for all ground term t ∈ L and |t| > k, there exists a context C ∈ C(F), a nontrivial
context C ′ ∈ C(F) and a ground term t′ such that t = C[C ′[t′]] and ∀n ∈ N. C[C ′n[t′]] ∈ L.

Proof of Proposition 16. Let τ./ where τ =
• ◦ • ◦

. For an input tree τ ′ ∈ T+, the

result tree is
τ ′ ◦ τ ′ ◦

in which the left and right subtree are identical. If τ./ is automatic

then it satisfies the Pumping Lemma. However, the Pumping Lemma only allows us to pump
either the left or the right subtree and thus they will be different after pumping, which is a
contradiction. Now consider the following sequence: τ1 =

• ◦ • ◦
, τn+1 =

τn τn
then

each of the τi./ is not automatic. J

6 Future Work

We identify several directions for future research. One obvious question is the decidability of
the existential theory of the tree share model with ./, t, u, and �, where ./ is unrestricted.
Our connection to word equations does not seem to provide an answer to decidability of
this problem. Another question is the computational complexity of adding more general
constants (i.e., other than ◦ and •) to the first order theory ofM. Although such constants
are in some way “definable” (e.g. in first-order logic over the vocabulary with ◦ and •), the
definition in general requires a formula of superpolynomial size. For this reason, connections
to CABA do not immediately yield the same computational complexity. A final direction for
future work is to investigate the integration of ./� into a practical program logic.

7 Conclusion

We have demonstrated the decidability and complexity of a first-order theory over the
Boolean logic of tree shares by pinpointing the connection to countable atomless Boolean
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algebras. We have provided the first serious look at the complexity of the tree multiplication
./ operator and by way of an isomorphism to word equations prove that the existential
theory is in PSPACE while the general first-order theory is undecidable. We have identified
a restricted version of ./ that takes constants on the right-hand side ./� and have proven
that the system (T,t,u,�, ./�) has a decidable first-order theory via an embedding to
tree-automatic structures.
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