
36

AQuantum Interpretation of Separating Conjunction for
Local Reasoning ofQuantum Programs Based on Separation
Logic

XUAN-BACH LE, Nanyang Technological University, Singapore

SHANG-WEI LIN, Nanyang Technological University, Singapore

JUN SUN, Singapore Management University, Singapore

DAVID SANAN, Nanyang Technological University, Singapore

It is well-known that quantum programs are not only complicated to design but also challenging to verify

because the quantum states can have exponential size and require sophisticated mathematics to encode

and manipulate. To tackle the state-space explosion problem for quantum reasoning, we propose a Hoare-

style inference framework that supports local reasoning for quantum programs. By providing a quantum

interpretation of the separating conjunction, we are able to infuse separation logic into our framework and

apply local reasoning using a quantum frame rule that is similar to the classical frame rule. For evaluation, we

apply our framework to verify various quantum programs including Deutsch–Jozsa’s algorithm and Grover’s

algorithm.

CCS Concepts: • Software and its engineering → General programming languages; • Social and pro-
fessional topics→ History of programming languages.

Additional Key Words and Phrases: Quantum Computing, Verification, Formal Semantics

ACM Reference Format:
Xuan-Bach Le, Shang-Wei Lin, Jun Sun, and David Sanan. 2022. A Quantum Interpretation of Separating

Conjunction for Local Reasoning of Quantum Programs Based on Separation Logic. Proc. ACM Program. Lang.
6, POPL, Article 36 (January 2022), 27 pages. https://doi.org/10.1145/3498697

1 INTRODUCTION
Since quantum technology has progressed rapidly in the last decade, academia and industry

started to build quantum computers [Google 2018a; IBM 2020]. Accordingly, there is an increasing

number of quantum programming languages and associated compilers developed recently, e.g.

Quipper [Green et al. 2013], Scaffold [JavadiAbhari et al. 2015], QWire [Paykin et al. 2017], Mi-

crosoft’s LIQUi|⟩ [Wecker et al. 2014] and Q# [Svore et al. 2018], IBM’s OpenQASM [Cross et al.

2017], Google’s Cirq [Google 2018b], ProjectQ [Steiger et al. 2018], Chisel-Q [Liu and Kubiatowicz

2013], Q|SI⟩ [Liu et al. 2017], and Silq [Bichsel et al. 2020]. It can be expected that quantum programs

will take over certain computation tasks from traditional programs in the near future, and thus

ensuring the correctness of quantum program becomes relevant.

Unlike classical bit which can only be either 0 or 1 at a time, a quantum bit (qubit) can be in

the superposition where both states 0 and 1 coexist simultaneously. In general, the superposition

Authors’ addresses: Xuan-Bach Le, Nanyang Technological University, Singapore, bach.le@ntu.edu.sg; Shang-Wei Lin,

Nanyang Technological University, Singapore, shang-wei.lin@ntu.edu.sg; Jun Sun, Singapore Management University,

Singapore, junsun@smu.edu.sg; David Sanan, Nanyang Technological University, Singapore, sanan@ntu.edu.sg.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2022 Copyright held by the owner/author(s).

2475-1421/2022/1-ART36

https://doi.org/10.1145/3498697

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 36. Publication date: January 2022.

https://doi.org/10.1145/3498697
https://doi.org/10.1145/3498697

36:2 Xuan-Bach Le, Shang-Wei Lin, Jun Sun, and David Sanan

{𝑃}𝑐{𝑄} free(𝐹) ∩mod(𝑐) = ∅
{𝑃 ★◦ 𝐹 }𝑐{𝑄 ★◦ 𝐹 }

QFrame

Fig. 1. The quantum frame rule QFrame

of 𝑛 qubits can contain up to 2
𝑛
classical states, therefore having the potential to speed up the

computation exponentially. Evidently, many computation problems can be solved efficiently using

quantum computation, such as Deutsch-Jozsa’s algorithm [Deutsch and Jozsa 1992] for solving

quantum black box, Grover’s algorithm [Grover 1996] for searching element in an unordered list,

or Shor’s algorithm [Shor 1994] for integer factorization.

Nevertheless, quantum algorithms/programs are challenging to design and verify due to the

exponential size of the superposition and certain physical limits on handling the superposition as

enforced by quantum mechanics. One of the pioneer works that explores verification for quantum

programs was proposed by Ying [Ying 2012] in which he extended Hoare logic [Hoare 1969] to

reason about quantum programs. Subsequently, several verification frameworks based on this

comprehensive foundation have been fruitfully established [Li and Ying 2017; Liu et al. 2019; Ying

2019]. These efforts are however less than ideal for the following reasons. First, these works employ

a global reasoning approach over the entire quantum system, which can cause scalability issue due

to the exponential size of the superposition. Second, these frameworks lacks of the direct support

for classical variables and classical controls. Even though classical states can be modelled using

quantum states [Feng and Ying 2021], such construct is tedious and unnecessarily complicates the

reasoning of the classical states.

To address the scalability issue, our approach infuses separation logic (SL) in its core to sup-

port local reasoning for quantum computation. Fig. 1 presents our quantum frame rule QFrame
that is identical to the classical frame rule [Reynolds 2002]. That said, the quantum separating

conjunction
★◦ has a different interpretation within the context of quantum computation. The

semantics of the predicate 𝑃 ★◦ 𝑄 means that the quantum state can be tensor-factorized into two

separate quantum states that satisfy 𝑃 and 𝑄 respectively. For convenience, we name
★◦ the tensor

conjunction hereafter. Informally, the tensor-factorization can be viewed as a generalization of

the heap disjoint union in multi-dimensional spaces. Similar to the classical frame rule, the side

condition of quantum frame rule QFrame requires that the program 𝑐 does not modify any free

variable in the frame predicate 𝐹 .

Another feature of our framework is the direct supports for classical variables and classical

controls. This is achieved by treating the computation as interactions between a classical computer

𝐶 and a quantum computer 𝑄 , where 𝐶 reads the measures made by 𝑄 and fetches classical inputs

(in binary) to 𝑄 . In other words, quantum computation is viewed as a sub-routine of the classical

program. As a result, we can express classical states using classical predicates and reuse the classical

reasoning framework such as Hoare rules for variable assignment and conditional statements.

Our paper is structured as follows.

§ 2 We review necessary background knowledge about quantum computing.

§ 3 We provide an example to illustrate local reasoning in our framework.

§ 4 Contribution 1: We propose an intermediate quantum language in §4.1 and an assertion

language for verification in §4.2. Our quantum language supports both classical statements

and quantum statements including dynamic allocation and deallocation of qubits.

§ 5 Contribution 2: We propose an inference system for quantum reasoning in §5.1 and §5.2,

and entailment system in §5.3.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 36. Publication date: January 2022.

AQuantum Interpretation of Separating Conjunction Based on Separation Logic 36:3

§ 6 Contribution 3: We apply our framework to verify the 𝑛-qubit Hadamard transforma-

tion §6.1, Deutsch’s algorithm §6.2 and also its generalization Deutsch–Jozsa’s algorithm

§6.3 [Deutsch and Jozsa 1992], and Grover’s algorithm §6.4 [Grover 1996].

§7 Contribution 4: We define the operational semantics and use it to justify the soundness of

our reasoning framework. We then discuss the main limitations of our framework.

§8 We discuss the related works and compare them with our framework.

§9 We conclude our work and discuss the future works.

2 PRELIMINARIES
We assume that our readers are familiar with basic concepts in linear algebra, e.g. Hilbert spaces,

tensor products ⊗, complex conjugate 𝑧. For a complex scalar 𝑐 ∈ C, we write |𝑐 | for its modulus√
𝑐𝑐 . Given a matrix M, we write M𝑇

for its transpose, and M†
for its conjugate transpose. We

may write the sum

∑𝑛
𝑖=𝑖0

as

∑
𝑖 if the range of 𝑖 can be implied from the context.

2.1 Dirac Notation for Matrix Operators

A vector 𝑣 is a column matrix, i.e. 𝑣 =
(
𝑐1 . . . 𝑐𝑛

)𝑇
. We use the ket |·⟩ to express vectors, and the

bra ⟨·| for their conjugate transposes. We let B
△
= {|0⟩, |1⟩} be the standard binary basis where

|0⟩ =
(
1 0

)𝑇
and |1⟩ =

(
0 1

)𝑇
. Then we can express a vector 𝑣 =

(
𝑎1 𝑎2

)𝑇
as |𝑣⟩ = 𝑎1 |0⟩ + 𝑎2 |1⟩

and ⟨𝑣 | = 𝑎1⟨0| + 𝑎2⟨1|. We let V𝑛B be the Hilbert space spanning from the basis B𝑛 where B0
△
= {1}

and B𝑛+1
△
= B𝑛 ⊗ B. Hereafter, we use the symbols |𝑒⟩, |𝑒 ′⟩, |𝑒 ′′⟩, . . . to represent basis vectors.

Let V1,V2 be vector spaces with the bases 𝐵1, 𝐵2 respectively. Then the tensor space V1 ⊗ V2 is

the vector space spanning from the basis 𝐵1⊗𝐵2. We say a vector |𝑣⟩ ∈ V1⊗V2 is tensor-factorizable
if it can be expressed as the tensor product |𝑣⟩ = |𝑣1⟩ ⊗ |𝑣2⟩ where |𝑣1⟩ ∈ V1, |𝑣2⟩ ∈ V2. As a result,

local reasoning can be applied to reason about the individual states expressed by |𝑣1⟩ and |𝑣2⟩. On
the other hand, not every vector in the tensor space V1 ⊗ V2 is tensor-factorizable. For example, it

can be shown through proof of contradiction that the vector
|00⟩+ |11⟩√

2

representing the Bell state

is not tensor-factorizable. This phenomenon is usually referred as the quantum entanglement in
which the states of the quantum sub-systems cannot be expressed independently of each other.

Let 𝑣1 =
∑

𝑖 𝑎𝑖 |𝑒𝑖⟩ ∈ V1, |𝑣2⟩ =
∑

𝑗 𝑏 𝑗 |𝑒 ′𝑗 ⟩ ∈ V2. Their outer product is |𝑣1⟩⟨𝑣2 |
△
=

∑
𝑖, 𝑗 𝑎𝑖𝑏 𝑗 |𝑒𝑖⟩⟨𝑒 ′𝑗 |.

If V1 = V2 then their inner product is the complex ⟨𝑣2 |𝑣1⟩
△
=

∑
𝑖 𝑎𝑖𝑏𝑖 . Note that ⟨·|·⟩ is conjugate

symmetric, i.e. ⟨𝑣1 |𝑣2⟩ = ⟨𝑣2 |𝑣1⟩, and linear in the second argument, i.e. ⟨𝑣 |𝑎𝑣1 + 𝑏𝑣2⟩ = 𝑎⟨𝑣 |𝑣1⟩ +
𝑏⟨𝑣 |𝑣2⟩. Furthermore, ⟨𝑣 |𝑣⟩ is real and positive for every |𝑣⟩ ≠ 0, and the norm of |𝑣⟩ is defined as

∥𝑣 ∥ △
=

√
⟨𝑣 |𝑣⟩. We say |𝑣⟩ is normalized if ∥𝑣 ∥ = 1.

Unless stated otherwise, we assume that our vectors belong to the Hilbert spaces V𝑛B . For
convenience, we may write the tensor product |𝑣1⟩ ⊗ |𝑣2⟩ as |𝑣1⟩|𝑣2⟩ or even |𝑣1𝑣2⟩. Also, we write
|𝑣𝑛⟩ to express the tensor |𝑣⟩ . . . |𝑣⟩ in which |𝑣⟩ appears 𝑛 times. If 𝑛 = 0 then we let |𝑣0⟩ = 1.

2.2 A Minimalist’s View ofQuantum Computing
Complex Hilbert spaces are used to model quantum computation. In particular, the pure state of a
qubit is expressed by a normalized vector 𝑎0 |0⟩ + 𝑎1 |1⟩ such that |𝑎0 |2 + |𝑎1 |2 = 1. This indicates

that the qubit is in the superposition where both classical states |0⟩ and |1⟩ exist simultaneously

and the complex numbers 𝑎0, 𝑎1 are their amplitudes respectively. In general, the superposition of

𝑛 qubits is expressed by the vector |𝑣⟩ = ∑
𝑖 𝑎𝑖 |𝑒𝑖⟩ ∈ V𝑛B such that ∥𝑣 ∥ = 1, where each basis vector

|𝑒𝑖⟩ ∈ B𝑛 corresponds to a classical state in the superposition.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 36. Publication date: January 2022.

36:4 Xuan-Bach Le, Shang-Wei Lin, Jun Sun, and David Sanan

Quantum gates/operators transform the quantum superpositions from one to another. A

quantum operatorU : V𝑛B ↦→ V𝑛B for 𝑛 qubits is a 2
𝑛 × 2

𝑛 unitary matrix, i.e.UU† = U†U = I𝑛
where I𝑛 denotes the 2

𝑛 ×2
𝑛
identity matrix. We can expressU as sum of outer products as follows:

U △
=

∑
𝑖

|𝑣𝑖⟩⟨𝑒𝑖 | where |𝑒𝑖⟩ ∈ B𝑛 and |𝑣𝑖⟩ = U(|𝑒𝑖⟩) (1)

Let |𝑣⟩ = ∑
𝑖 𝑎𝑖 |𝑒𝑖⟩ ∈ V𝑛B . Then U transforms |𝑣⟩ into:

U(|𝑣⟩) △
= U|𝑣⟩ =

(∑
𝑖

|𝑣𝑖⟩⟨𝑒𝑖 |
) (∑

𝑖

𝑎𝑖 |𝑒𝑖⟩
)
=

∑
𝑖

𝑎𝑖 |𝑣𝑖⟩ (2)

Quantum operators can be combined together via the tensor product. Let U ′ =
∑

𝑗 |𝑣 ′𝑗 ⟩⟨𝑒 ′𝑗 | be a
quantum operator for𝑚 qubits. Then U ⊗ U ′

is a quantum operator for 𝑛 +𝑚 qubits such that:

U ⊗ U ′ △
=

(∑
𝑖

|𝑣𝑖⟩⟨𝑒𝑖 |
)
⊗

(∑
𝑗

|𝑣 ′𝑗 ⟩⟨𝑒 ′𝑗 |
)
=

∑
𝑖, 𝑗

|𝑣𝑖𝑣 ′𝑗 ⟩⟨𝑒𝑖𝑒 ′𝑗 | (3)

Quantum measurement manipulates the state of the qubits to obtain information about them,

e.g. their classical states. The measurement of 𝑛 qubits is defined using a set of linear mappings
1

{M𝑖 }𝑘𝑖=1 (not necessarily unitary) where each mapping M𝑖 computes a measured outcome and∑𝑘
𝑖=1 M

†
𝑖
M𝑖 = I𝑛 . Let |𝑣⟩ =

∑
𝑗 𝑎 𝑗 |𝑒 𝑗 ⟩ ∈ V𝑛B be the state space of 𝑛 qubits to be measured. Then

there is a probability of 𝜌𝑖 that the measurement would yield the state |𝑣𝑖⟩ such that:

𝜌𝑖 = ⟨𝑣 |M†
𝑖
M|𝑣⟩ = ∥M𝑖 (|𝑣⟩)∥2 and |𝑣𝑖⟩ =

M𝑖 (|𝑣⟩)√
𝜌𝑖

=
M𝑖 (|𝑣⟩)
∥M𝑖 (|𝑣⟩)∥

(4)

Note that the requirement

∑𝑘
𝑖=1 M

†
𝑖
M𝑖 = I𝑛 ensures that the sum of all outcome probabilities is 1,

i.e.

∑𝑘
𝑖=1 𝜌𝑖 = 1. Similar to quantum operators, measurements can be combined via the tensor product.

Let {M ′
𝑗 }ℎ𝑗=1 be a measurement for𝑚 qubits. Then {M𝑖 }ℎ𝑖=1 ⊗ {M ′

𝑗 }𝑘𝑗=1
△
= {M𝑖 ⊗M ′

𝑗 }
(𝑘,ℎ)
(𝑖, 𝑗)=(1,1) is a

measurement for 𝑛 +𝑚 qubits. In particular, the measurement {M𝑖 }ℎ𝑖=1 ⊗ {I𝑚} = {M𝑖 ⊗ I𝑚}ℎ𝑖=1 is
used when we only measure a subset of qubits in the quantum system.

More often, a qubit is measured for its classical states |0⟩ and |1⟩. The correspondingmeasurement

is {M0,M1} where M𝑖 = |𝑖⟩⟨𝑖 |. This type of measurement is projective as M2

𝑖 = M𝑖 for 𝑖 ∈ {0, 1}.
The measurement would collapse a superposition 𝑎0 |0⟩ + 𝑎1 |1⟩ into |0⟩ with probability |𝑎0 |2, and
into |1⟩ with probability |𝑎1 |2. In general, we can measure 𝑛 qubits via the projective measurement

{|𝑒𝑖⟩⟨𝑒𝑖 |}𝑖 where each |𝑒𝑖⟩ is a basis vector in B𝑛 . This measurement would collapse a superposition∑
𝑖 𝑎𝑖 |𝑒𝑖⟩ into each classical state |𝑒𝑖⟩ with probability |𝑎𝑖 |2.
Interpretation of quantum computation. Quantum states are classified into pure states —

the superposition of classical states — and mixed states — probabilistic ensembles of pure states (e.g.

due to measurements). Vectors can express the former but not the latter. In general, the density
operator is used to express mixed states. Let 𝑆 = {(𝜌𝑖 , |𝑠𝑖⟩)}𝑛𝑖=1 be a mixed state where 𝜌𝑖 is the

probability associated with the pure state |𝑠𝑖⟩. The density operator of 𝑆 is the following matrix:

S =

𝑛∑
𝑖=1

𝜌𝑖 |𝑠𝑖⟩⟨𝑠𝑖 | (5)

1
The conventional definition of measurement starts with {F𝑖 }𝑘𝑖=1 where F𝑖 is self-adjoint positive semidefinite and∑𝑘
𝑖=1 F𝑖 = I𝑛 . The former condition is equivalent to F𝑖 = M†

𝑖
M𝑖 for some M𝑖 , which then reduces to our definition of

measurement.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 36. Publication date: January 2022.

AQuantum Interpretation of Separating Conjunction Based on Separation Logic 36:5

1 { 𝑞∗ [0, 99] ↦→ |0100⟩ }
2 H(𝑞∗ [0]);H(𝑞∗ [1]);H(𝑞∗ [99]);
3 { 𝑞∗ [0] ↦→ |+⟩ ★◦ 𝑞∗ [1] ↦→ |+⟩ ★◦ true }

Fig. 2. A quantum program with Hadamard operatorH .

1 { 𝑞∗ [0, 99] ↦→ |0100⟩ }
2 { 𝑞∗ [0] ↦→ |0⟩ ★◦ 𝑞∗ [1] ↦→ |0⟩ ★◦ 𝑞∗ [99] ↦→ |0⟩ ★◦ true }
3 ⇐⇒ { 𝑞∗ [0] ↦→ |0⟩ } H (𝑞∗ [0]); { 𝑞∗ [0] ↦→ |+⟩ }
4 ⇐⇒ { 𝑞∗ [1] ↦→ |0⟩ } H (𝑞∗ [1]); { 𝑞∗ [1] ↦→ |+⟩ }
5 ⇐⇒ { 𝑞∗ [99] ↦→ |0⟩ } H (𝑞∗ [99]); { 𝑞∗ [99] ↦→ |+⟩ }
6 { 𝑞∗ [0] ↦→ |+⟩ ★◦ 𝑞∗ [1] ↦→ |+⟩ ★◦ 𝑞∗ [99] ↦→ |+⟩ ★◦ true }
7 { 𝑞∗ [0] ↦→ |+⟩ ★◦ 𝑞∗ [1] ↦→ |+⟩ ★◦ true }

Fig. 3. Proof of our quantum program.

In our framework, the mixed state is split into multiple pure states, each is associated with the

respective probability (c.f. §7.1). As a result, it is sufficient to express quantum states using vectors

which can be tensor-factorized for local reasoning. Furthermore, the vector representation is more

state-space efficient and human-readable than the density operator. When a measurement occurs,

the pure state goes to one of the outcomes non-deterministically, and the associated probability

is updated accordingly. Our interpretation of quantum computation is similar to the probability

based transition system for quantum computation [Selinger and Valiron 2005], which is consistent

with the density operator model [Selinger and Valiron 2008].

3 AN ILLUSTRATIVE EXAMPLE
We use the example in Fig 2 to demonstrate the strength of the quantum frame rule QFrame

(Fig. 1) for local reasoning. The precondition specifies that initially the quantum system contains

100 qubits stored in the array segment 𝑞∗ [0, 99] from index 0 to 99. Besides, their combined state

is |0100⟩ which is the tensor of 100 vectors |0⟩. Equivalently, each qubit in the system has the

classical state |0⟩. The program applies the quantum Hadamard operator H to the three qubits

{𝑞∗ [0], 𝑞∗ [1], 𝑞∗ [99]} sequentially. Here the operatorH transforms the classical state |0⟩ into the

superposition
|0⟩+ |1⟩√

2

and the classical state |1⟩ into the superposition
|0⟩−|1⟩√

2

. Thus its specs can be

expressed by the following matrix written in Dirac notation:

H △
= |+⟩⟨0| + |−⟩⟨1| where |+⟩ △

=
|0⟩ + |1⟩

√
2

and |−⟩ △
=

|0⟩ − |1⟩
√
2

(6)

In the postcondition, we would like to prove that the states of 𝑞∗ [0] and 𝑞∗ [1] are both |+⟩ and
are separable. Since the semantics for

★◦ in our framework is classical rather than intuitionistic, the

extra predicate true in the postcondition is necessary to avoid ‘dropping resources on the floor’, i.e.

we forbid 𝑃 ★◦ 𝑄 to imply 𝑃 . We utilize the following proof notations to highlight the use of the

frame rule QFrame:

⇐⇒ { 𝑃 } 𝑐 { 𝑄 } or equivalently

=⇒ { 𝑃 }
𝑐

⇐= { 𝑄 }

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 36. Publication date: January 2022.

36:6 Xuan-Bach Le, Shang-Wei Lin, Jun Sun, and David Sanan

(Expr) 𝑒 ::= Z | 𝑥,𝑦, . . . | 𝑓𝑚 (𝑒, . . . , 𝑒)
(Bexpr) 𝑏 ::= true | 𝑃𝑚 (𝑒, . . . , 𝑒) | 𝑏&&𝑏 | !𝑏
(Aexpr) 𝑒∗ ::= [] | 𝑞∗ [𝑒, 𝑒], . . . | 𝑒∗𝑒∗
(Stmt) 𝑐 ::= skip | 𝑥 := 𝑒 | if 𝑏 do 𝑐 else 𝑐 | while 𝑏 do 𝑐 | 𝑐 ; 𝑐 |

𝑞∗ := qbit(𝑒) | G(𝑒∗) | 𝑥 := measure(𝑒∗) | dispose(𝑞∗)

Fig. 4. Syntax of quantum programs.

Both notations indicate that {𝑃}𝑐{𝑄} is the local proof for 𝑐 and the latter is useful for long

proofs. The frame predicate 𝐹 can be deduced from the assertions before 𝑃 or after 𝑄 .

Fig. 3 presents the complete proof for our program. Since the postcondition only assesses the

first two qubits, the key idea of our approach is to reason about the states of these two qubits

locally rather than over the global state of 100 qubits as in the existing approaches (e.g. [Ying 2012]).

Starting from the precondition, the combined state is split into the states of individual qubits via

the following entailment rule (c.f. §5.3):

|𝑣⟩ ∈ V |𝑒∗ |
B |𝑣 ′⟩ ∈ V |𝑒′∗ |

B

𝑒∗𝑒 ′∗ ↦→ |𝑣⟩ ⊗ |𝑣 ′⟩ ⊣⊢
(
𝑒∗ ↦→ |𝑣⟩

∥𝑣 ∥

)
★◦ (

𝑒 ′∗ ↦→ |𝑣′⟩
∥𝑣′ ∥

) ★◦↦→
(7)

Here we write Φ1 ⊢ Φ2 to indicate that Φ1 proves Φ2, and if Φ2 also proves Φ1 then we write

Φ1 ⊣⊢ Φ2. We use the mapping 𝑒∗ ↦→ |𝑣⟩ to express that the the qubits in 𝑒∗ has the state |𝑣⟩. Also,
𝑒∗𝑒 ′∗ represents the concatenation of the two array segments 𝑒∗ and 𝑒 ′∗. The above rule allows
us to separate and combine the states of 𝑒∗ and 𝑒 ′∗, given that the combined state of 𝑒∗𝑒 ′∗ can be

tensor-factorized into the states of 𝑒∗ and 𝑒∗. On the right hand side, the states of 𝑒∗ and 𝑒 ′∗ are
divided by their norms for normalization.

As our program only modifies the three qubits 𝑞∗ [0], 𝑞∗ [1] and 𝑞∗ [99], other qubits can be

abstracted with the predicate true by applying the following rules (c.f. §5.3):

𝑃 ⊢ true ⊤
𝑃 ★◦ 𝑄 ⊣⊢ 𝑃 ∧𝑄

★◦ 𝑃 ⊢ 𝑄
𝑅 ★◦ 𝑃 ⊢ 𝑅 ★◦ 𝑄

★◦⊢
(8)

We overline a predicate 𝑃 to indicate that 𝑃 is pure, i.e. it does not contain symbols related to the

quantum states such as the tensor conjunction
★◦ and the quantum mapping ↦→. Starting from the

precondition, we use the fact that
★◦ is commutative and associative to separate the three qubits

𝑞∗ [0], 𝑞∗ [1] and 𝑞∗ [99] from the rest. We then apply ⊤–rule to turn the irrelevant qubits into true,
★◦–rule to conjunct the true predicates together, and finally ⊢ ★◦

–rule to combine true with the

three qubits in the program. In lines 3–5, we apply the frame rule QFrame to reason about the

state transformations of the individual qubits in {𝑞∗ [0], 𝑞∗ [1], 𝑞∗ [99]}. Finally, the postcondition is

obtained by abstracting 𝑞∗ [99] with the predicate true.

4 LANGUAGES FOR QUANTUM PROGRAMMING AND REASONING
We first explain our lightweight quantum language in §4.1 then the assertion language for rea-

soning in §4.2. Notation-wise, we use the characters {𝑥,𝑦, . . .} for classical variables, the charac-
ters {𝑞∗, 𝑝∗, . . .} for quantum variables which are essentially arrays of qubits, and the characters

{H ,X, . . .} for quantum gates/operators. We also assume a pre-defined set of arithmetic functions

𝑓𝑚 (e.g. +,×, . . .) and a pre-defined set of Boolean predicates 𝑃𝑚 (e.g. ≤,=, . . .).

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 36. Publication date: January 2022.

AQuantum Interpretation of Separating Conjunction Based on Separation Logic 36:7

(Pure expression) 𝑒𝑝 ::= C | 𝑥,𝑦, . . . | 𝑓𝑚 (𝑒𝑝 , . . . , 𝑒𝑝)
(Pure formula) 𝑃 ::= |𝑒∗ | ≤ 𝑒𝑝 | 𝑃𝑚 (𝑒𝑝 , . . . , 𝑒𝑝) | 𝑃 ∧ 𝑃 | ¬𝑃 | ∃𝑥 . 𝑃
(State expression) |𝑠⟩ ::= 𝑒𝑝 | |𝑒𝑝⟩ | |𝑠⟩ + |𝑠⟩ | |𝑠⟩ ⊗ |𝑠⟩
(Quantum formula) 𝐹 ::= 𝑃 | 𝑒∗ ↦→ |𝑠⟩ | 𝑒𝑝 · 𝐹 | 𝐹 ★◦ 𝐹 | 𝐹 ∨ 𝐹 | 𝐹 ∧ 𝐹 | ∃𝑥 . 𝐹 | ∀𝑥 . 𝐹

Fig. 5. The assertion language.

4.1 Quantum Programming Language
Fig. 4 presents the description of our quantum language. We use standard constructs for arithmetic

expression 𝑒 and Boolean expression 𝑏. The construct 𝑒∗ represents an array of qubits which can

be [] — the empty array — or the sub-array 𝑞∗ [𝑒1, 𝑒2] — where 𝑒1, 𝑒2 are the starting and ending

indices inclusively — or 𝑒∗
1
𝑒∗
2
— the concatenation of the two array segments 𝑒∗

1
and 𝑒∗

2
. We also

assume that our arrays except [] are non-empty by default.

The construct 𝑐 captures the syntax of our quantum programs. It supports standard statements

such as skip, assignment for classical variables, if-else and while. As a result, classical programs

can be expressed directly by our language. For quantum computation, our language supports the

following statements:

+ Allocation: 𝑞∗ := qbit(𝑛) allocates 𝑛 new qubits to the fresh array segment 𝑞∗ [0, 𝑛 − 1] and
initiates the state of each qubit to |0⟩. For example, the statement 𝑞∗ := qbit(3) allocates three
qubits to 𝑞∗ [0, 2] and sets the initial state of each qubit to |0⟩.
+ Transformation: G(𝑒∗) applies the quantum operator G to transform the state of the qubits in

the array segment 𝑒∗. For the transformation to be feasible, the dimension of the operator G needs

to be compatible with the state dimension of 𝑒∗.
+ Measurement: 𝑣 := measure(𝑒∗) measures the state of the qubits in the array segment 𝑒∗ and
assigns the result to the classical variable 𝑣 in decimal base. For example, measuring the quantum

state (|00⟩ + |11⟩)/
√
2 would either return the classical value 0 (i.e. |00⟩) or 3 (i.e. |11⟩) with equal

probability of 0.5. After the measurement, the qubits in 𝑒∗ become separable from the remaining

qubits in the system.

+ Deallocation: dispose(𝑞∗) removes all qubits in the array 𝑞∗. For the deallocation to be safe

from interference, we require that the disposing qubits are separable from the remaining quantum

system. Since our framework focuses on the reasoning, the above condition is enforced at the

semantics layer by ensuring that quantum states can be tensor-factorizable before the disposal. In

practice, it can be done (incompletely) through static type systems (e.g. [Bichsel et al. 2020]).

4.2 Assertion Language
Fig. 5 presents our assertion language for quantum reasoning. The classical states are expressed by

pure predicate 𝑃 which is a first-order formula over pure expressions 𝑒𝑝 — arithmetic expression

with complex constants. Note that 𝑃 can contain the length predicate |𝑒∗ | ≤ 𝑒𝑝 in which |𝑒∗ |
represents the length of the array segment 𝑒∗. This length predicate is useful to keep track of the

number of qubits in the arrays during the allocations and deallocations.

Quantum states are expressed by the vector |𝑠⟩ in Dirac notation to improve readability. In detail,

|𝑠⟩ can be a complex scalar 𝑒𝑝 , a basis vector |𝑒𝑝⟩ ∈ B where 𝑒𝑝 is evaluated to either 0 or 1, the

vector sum |𝑠1⟩ + |𝑠2⟩, or the tensor product |𝑠1⟩ ⊗ |𝑠2⟩. Note that the scalar multiplication can be

interpreted using the tensor product, i.e. 𝑒𝑝 |𝑠⟩ is equivalent to 𝑒𝑝 ⊗ |𝑠⟩.
The quantum predicate 𝐹 is a first-order formula over both classical and quantum states. Classical

states are expressed by pure predicates 𝑃 . Furthermore, 𝐹 contains the following predicates to

express quantum states and probabilities:

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 36. Publication date: January 2022.

36:8 Xuan-Bach Le, Shang-Wei Lin, Jun Sun, and David Sanan

{𝑃}𝑐{𝑄} free(𝐹) ∩mod(𝑐) = ∅
{𝑃 ★◦ 𝐹 }𝑐{𝑄 ★◦ 𝐹 }

QFrame

{𝑃}𝑐{𝑄} free(𝑒) ∩mod(𝑐) = ∅
{𝑒 · 𝑃}𝑐{𝑒 ·𝑄} PFrame

{𝑃}𝑐{𝑄} free(𝐹) ∩mod(𝑐) = ∅
{𝑃 ∧ 𝐹 }𝑐{𝑄 ∧ 𝐹 } Frame

Fig. 6. The quantum frame rule QFrame and its derived rules

(1) Quantum mapping 𝑒∗ ↦→ |𝑠⟩ which specifies that the vector |𝑠⟩ represents the combined

quantum state of the qubits in the array 𝑒∗. This notation is generalized from the SL mapping

𝑥 ↦→ 𝑣 which indicates the value 𝑣 is stored at the memory address 𝑥 . This generalization is

necessary to express the entangled states of multiple qubits.

(2) Fractional conjunction 𝑒𝑝 · 𝐹 which specifies that the program state satisfies 𝐹 and is

associated with a probability of 𝑒𝑝 . We use this predicate to capture the probabilities of

the measurement outcomes. The notation 𝑒𝑝 · 𝐹 is inspired from the predicate for disjoint

fractional permissions [Le and Hobor 2018], where 𝑒𝑝 represents the permission associated

with the resource specified by 𝐹 .

(3) Tensor conjunction 𝐹1 ★◦ 𝐹2 which specifies that the quantum state can be tensor-factorized

into two quantum states satisfying 𝐹1 and 𝐹2 respectively. Semantics-wise, this indicates that

the two quantum states are separable and thus can be reasoned locally using the frame rule.

Notations. We adopt the following notations hereafter. We write |emp⟩ for the empty quantum

heap that maps the empty array to the scalar 1, i.e. [] ↦→ 1. We write
★◦𝑛
𝑖=𝑚 𝐹 (𝑖) to express the

predicate 𝐹 (𝑚) ★◦ 𝐹 (𝑚 + 1) . . . ★◦ 𝐹 (𝑛). If𝑚 > 𝑛 then we let
★◦𝑛
𝑖=𝑚 𝐹 (𝑖) equal to 1.

5 INFERENCE FRAMEWORK
We explain the key inference rules in our framework, starting from the ruleQFrame and its variants
in §5.1, followed by the core quantum rules in §5.2, to the entailment rules in §5.3.

5.1 Quantum Frame Rule
Fig. 6 features the quantum frame rule QFrame and its derived rules PFrame and Frame. Similar to

its SL counterpart,QFrame allows us to attach the the frame predicate 𝐹 into the pre/post-conditions

of the local proof {𝑃}𝑐{𝑄}. The side condition free(𝐹) ∩mod(𝑐) = ∅ specifies that the program 𝑐

does not modify any free variables in 𝐹 . Here free(𝐹) contains free classical variables (e.g. 𝑥,𝑦, . . .)
and quantum variables (e.g. 𝑞∗, 𝑝∗, . . .) in 𝐹 . On the other hand, mod(𝑐) contains classical variables
modified by 𝑐 and quantum variables in the allocation/deallocation statements of 𝑐 , i.e.:

mod(G(𝑒∗)) △
= ∅ mod(𝑣 := 𝑒) = mod(𝑣 := measure(𝑒∗)) △

= {𝑣}
mod(𝑞∗ := qbit[𝑒] (𝑒 ′)) = mod(dispose(𝑞∗)) △

= {𝑞∗}
(9)

The two rules PFrame and Frame are derived from QFrame (c.f. §7.4). The probabilistic frame
rule PFrame reduces the proof {𝑒 ·𝑃}𝑐{𝑒 ·𝑄} to {𝑃}𝑐{𝑄}. The pure frame rule QFrame is applicable
when the frame predicate 𝐹 is pure and so

★◦ can be replaced by ∧. Both derived rules require

that the program 𝑐 does not modify any free variable in the frame components, i.e. the probability

expression 𝑒 in PFrame and the pure predicate 𝐹 in Frame.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 36. Publication date: January 2022.

AQuantum Interpretation of Separating Conjunction Based on Separation Logic 36:9

{|emp⟩ ∧ 𝑒 = 𝑛 > 0}𝑞∗ := qbit(𝑒){𝑞∗ [0, 𝑛 − 1] ↦→ |0𝑛⟩ ∧ |𝑞∗ | = 𝑛} Qubit

{𝑞∗ [0, 𝑛 − 1] ↦→ |𝑣⟩ ∧ |𝑞∗ | = 𝑛}dispose(𝑞∗){|emp⟩} Dis

G : V
|𝑒∗ |
B ↦→ V |𝑒∗ |

B |𝑒𝑖⟩ ∈ B |𝑒∗ |

{𝑒∗𝑒 ′∗ ↦→ ∑
𝑖, 𝑗 𝑎𝑖, 𝑗 |𝑒𝑖⟩|𝑒 ′𝑗 ⟩}G(𝑒∗){𝑒∗𝑒 ′∗ ↦→ ∑

𝑖, 𝑗 𝑎𝑖, 𝑗G(|𝑒𝑖⟩) |𝑒 ′𝑗 ⟩}
Trans

|𝑒𝑖⟩ ∈ B |𝑒∗ |, |𝑒 ′𝑗 ⟩ ∈ B |𝑒′∗ | 𝑣 ∉ free(Ψ) 𝜌𝑖
△
=

∑
𝑗 |𝑎𝑖, 𝑗 |2

Ψ
△
= 𝑒∗𝑒 ′∗ ↦→ ∑

𝑖, 𝑗 𝑎𝑖, 𝑗 |𝑒𝑖⟩|𝑒 ′𝑗 ⟩ Ψ𝑖
△
= 𝑒∗ ↦→ |𝑒𝑖⟩ ★◦ 𝑒 ′∗ ↦→ ∑

𝑗
𝑎𝑖,𝑗√
𝜌𝑖
|𝑒 ′𝑗 ⟩

{Ψ ∧ (∧𝑖 Φ𝑖 [𝑣/𝑒𝑖])}𝑣 := measure(𝑒∗){∨𝑖 (𝜌𝑖 · Ψ𝑖 ∧ Φ𝑖)}
Ms

(a) Quantum inference rules

{𝑃}skip{𝑃} Sk {𝑃 [𝑣/𝑒]}𝑣 := 𝑒{𝑃} Assign
{𝑃}𝑐1{𝑅} {𝑅}𝑐2{𝑄}

{𝑃}𝑐1; 𝑐2{𝑄} Seq

{𝑃 ∧ 𝑏}𝑐1{𝑄} {𝑃 ∧ ¬𝑏}𝑐2{𝑄}
{𝑃}if 𝑏 do 𝑐1 else 𝑐2{𝑄} If

{𝐼 ∧ 𝑏}𝑐{𝐼 }
{𝐼 }while 𝑏 do 𝑐{𝐼 ∧ ¬𝑏} While

{false}𝑐{𝑃} Bot
𝑃 ′ ⊢ 𝑃 {𝑃}𝑐{𝑄} 𝑄 ⊢ 𝑄 ′

{𝑃 ′}𝑐{𝑄 ′} Cons

{𝑃}𝑐{𝑄} {𝑃 ′}𝑐{𝑄 ′}
{𝑃 ∨ 𝑃 ′}𝑐{𝑄 ∨𝑄 ′} Disj

{𝑃}𝑐{𝑄} {𝑃 ′}𝑐{𝑄 ′}
{𝑃 ∧ 𝑃 ′}𝑐{𝑄 ∧𝑄 ′} Conj

(b) Classical Hoare rules

Fig. 7. Inference system for reasoning

5.2 Quantum Core Rules
Fig. 7 presents the core reasoning rules in our framework. The rules for classical statements in

Fig. 7b are standard and self-explanatory. We now explain the quantum rules in Fig. 7a.

[Qubit] reasons about the allocation 𝑞∗ := qbit(𝑒). The precondition of the Hoare triple specifies

the empty quantum heap |emp⟩ and the pure expression 𝑒 is evaluated to some integer 𝑛 > 0. The

postcondition specifies that 𝑛 new qubits are allocated to 𝑞∗ and their states are initiated to |0⟩.
Besides, the length predicate |𝑞∗ | = 𝑛 allows us to keep track of the number of qubits in 𝑞∗.

[Dis] reasons about the deallocation dispose(𝑞∗). In the Hoare triple, the precondition captures

the combined state of the qubits in 𝑞∗. As the qubits in 𝑞∗ are disposed, the postcondition becomes

the empty quantum heap |emp⟩.
[Trans] reasons about the quantum transformation G(𝑒∗), i.e. the application of the quantum

operator G to the qubits in 𝑒∗. The precondition of the Hoare triple specifies the combined state of

𝑒∗𝑒 ′∗. This includes the cases where the state of 𝑒∗ is entangledwith the state of 𝑒 ′∗ and therefore their
states must be expressed together. In the postcondition, the combined state of 𝑒∗𝑒 ′∗ is transformed

by applying G to the basis vectors of 𝑒∗.
[Ms] reasons about the measurement 𝑣 := measure(𝑒∗) where the qubits in 𝑒∗ are measured and

the outcome is assigned to 𝑣 in decimal base. The precondition of the Hoare triple is the conjunctive

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 36. Publication date: January 2022.

36:10 Xuan-Bach Le, Shang-Wei Lin, Jun Sun, and David Sanan

predicate Ψ ∧ (∧𝑖 Φ𝑖 [𝑣/𝑒𝑖]) where Ψ is the mapsto predicate that expresses the combined state

of 𝑒∗𝑒 ′∗ and Φ𝑖 [𝑣/𝑒𝑖] are pure predicates in which 𝑣 is replaced by the measurement outcomes 𝑒𝑖 .

Similar to the rule Trans, the combined state 𝑒∗𝑒 ′∗ in Ψ is necessary when the states of 𝑒∗ and 𝑒 ′∗ are
entangled. The side condition 𝑣 ∉ free(Ψ) — that 𝑣 is not a free variable in Ψ — helps to prevent 𝑣

from affecting the evaluation of the quantum state in Ψ after the measurement. Our postcondition

is the disjunctive predicate

∨
𝑖 (𝜌𝑖 · Ψ𝑖 ∧ Φ𝑖) which represents the probabilistic ensemble of the

quantum states after the measurement. Each predicate 𝜌𝑖 · Ψ𝑖 ∧Φ𝑖 specifies an outcome 𝑒𝑖 where 𝜌𝑖
is the respective probability, Ψ𝑖 expresses the result quantum state where the state of 𝑒∗ is |𝑒𝑖⟩ and
is separable from the state of 𝑒 ′∗, and Φ(𝑖) expresses the classical state where 𝑣 = 𝑒𝑖 .

Example ofMs rule. Assume our 2-qubit system {𝑞∗ [0], 𝑞∗ [1]} is in the entangled Bell’s state

|00⟩+ |11⟩√
2

and the first qubit is measured as 𝑣 := measure(𝑞∗ [0]). We let the precondition be the

following conjunctive predicate:(
𝑞∗ [0, 1] ↦→ 1

√
2

|00⟩ + 1

√
2

|11⟩
)
∧ (0 = 0 ∧ 1 = 1) (10)

According to the measurement rule, the probabilities associated with the measured states |0⟩ and
|1⟩ are computed to be 𝜌1 = 𝜌2 =

1

2
. Our postcondition is the disjunctive predicate 𝐹1 ∨ 𝐹2 where

each 𝐹𝑖 corresponds to an outcome of the measurement, i.e.:

𝐹1
△
= 1

2
·
(
𝑞∗ [0] ↦→ |0⟩ ★◦ 𝑞∗ [1] ↦→ |0⟩

)
∧ 𝑣 = 0 𝐹2

△
= 1

2
·
(
𝑞∗ [0] ↦→ |1⟩ ★◦ 𝑞∗ [1] ↦→ |1⟩

)
∧ 𝑣 = 1 (11)

The predicates 𝐹1 and 𝐹2 capture the states of𝑞
∗ [0], 𝑞∗ [1] and the value of 𝑣 after themeasurement.

In both cases, the states of the two qubits become separable.

5.3 Entailment Reasoning
Fig. 8 presents our core entailment rules to manipulate the quantum predicates. We use the notation

𝑃 ⊢ 𝑄 to indicate that 𝑃 proves 𝑄 , and the notation 𝑃 ⊣⊢ 𝑄 if the other direction also holds. We

now briefly explain these rules.

Fig. 8a consists of proof rules for
★◦. The three rules { ★◦𝐸

, ★◦𝐶
, ★◦𝐴} indicate that the empty

quantum heap |emp⟩ is the identity element and
★◦ is commutative and associative. The

★◦⊢
–rule

allows us to attach the predicate 𝑅 into 𝑃 ⊢ 𝑄 as 𝑃 ★◦ 𝑅 ⊢ 𝑄 ★◦ 𝑅. The ★◦–rule replaces
★◦ with ∧ if

both predicates are pure. The
★◦∧

–rule replaces 𝑃 ∧ (𝑄 ★◦ 𝑅) with (𝑃 ∧𝑄) ★◦ 𝑅 and vice versa. The

two rules { ★◦∧
, ★◦∨} help to distribute

★◦ into conjunctive and disjunctive predicates.

The two rules in Fig. 8b are for the mapsto predicate. The

★◦↦→–rule allows us to split/join the

quantum states. In detail, if the combined state of 𝑒∗𝑒 ′∗ can be tensor-factorized into |𝑣⟩ ⊗ |𝑣 ′⟩
then the states of 𝑒∗ and 𝑒 ′∗ are separable and are expressed by the normalized vectors |𝑣⟩/∥𝑣 ∥ and
|𝑣 ′⟩/∥𝑣 ′∥ respectively. The other 𝐶↦→–rule helps to rearrange the positions of the qubits. We can use

it to infer the combined state of 𝑒 ′∗𝑒∗ from the combined state of 𝑒∗𝑒 ′∗ — i.e. the positions of 𝑒∗ and
𝑒 ′∗ are swapped — by swapping the basis vectors of 𝑒∗ and 𝑒 ′∗ in the state vector of 𝑒∗𝑒 ′∗.

The rules in Fig. 8c are for probability reasoning. The P⊢–rule reduces the proof 𝑝 · 𝑃 ⊢ 𝑝 ·𝑄 to

𝑃 ⊢ 𝑄 . The P𝐼–rule rewrite 1 · 𝑃 with 𝑃 and vice versa. The P⊥–rule helps to eliminate the cases

where the probability expression 𝑝 is invalid. The P–rule rewrites 𝑝 · (𝑃 ∧𝑄) with 𝑃 ∧ 𝑝 ·𝑄 and

vice versa. The P𝐽 –rule collapses nested probabilities by multiplying them together. The P
★◦
–rule

distributes the probabilities over
★◦. The two rules {P∧, P∨} distribute the probability over {∧,∨}.

Fig. 8d highlights several useful classical rules. The⊤–rule asserts that any 𝑃 proves truewhereas
the ⊥–rule asserts that false proves any 𝑃 . The 𝑆

=–rule substitutes the term/expression 𝑡 ′ for 𝑡 in 𝑃

— given that they are semantically equivalent with respect to the context of 𝑃 .

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 36. Publication date: January 2022.

AQuantum Interpretation of Separating Conjunction Based on Separation Logic 36:11

𝑃 ★◦ |emp⟩ ⊣⊢ 𝑃
★◦𝐸

𝑃 ★◦ 𝑄 ⊢ 𝑄 ★◦ 𝑃
★◦𝐶

(𝑃 ★◦ 𝑄) ★◦ 𝑅 ⊣⊢ 𝑃 ★◦ (𝑄 ★◦ 𝑅)
★◦𝐴

𝑃 ⊢ 𝑄
𝑃 ★◦ 𝑅 ⊢ 𝑄 ★◦ 𝑅

★◦⊢
𝑃 ★◦ 𝑄 ⊣⊢ 𝑃 ∧𝑄

★◦
𝑃 ∧ (𝑄 ★◦ 𝑅) ⊣⊢ (𝑃 ∧𝑄) ★◦ 𝑅

★◦∧

𝑃 ★◦ (𝑄 ∧ 𝑅) ⊢ (𝑃 ★◦ 𝑄) ∧ (𝑃 ★◦ 𝑅)
★◦∧

𝑃 ★◦ (𝑄 ∨ 𝑅) ⊣⊢ (𝑃 ★◦ 𝑄) ∨ (𝑃 ★◦ 𝑅)
★◦∨

(a) Rules for the tensor conjunction

|𝑣⟩ ∈ V |𝑒∗ |
B |𝑣 ′⟩ ∈ V |𝑒′∗ |

B

𝑒∗𝑒 ′∗ ↦→ |𝑣⟩ ⊗ |𝑣 ′⟩ ⊣⊢ 𝑒∗ ↦→ |𝑣⟩
∥𝑣 ∥

★◦ 𝑒 ′∗ ↦→ |𝑣′⟩
∥𝑣′ ∥

★◦↦→
|𝑒𝑖⟩ ∈ V |𝑒∗ |

B |𝑒 ′𝑗 ⟩ ∈ V
|𝑒′∗ |
B

𝑒∗𝑒 ′∗ ↦→ ∑
𝑖, 𝑗 𝑎𝑖, 𝑗 |𝑒𝑖⟩|𝑒 ′𝑗 ⟩ ⊢ 𝑒 ′∗𝑒∗ ↦→

∑
𝑖, 𝑗 𝑎𝑖, 𝑗 |𝑒 ′𝑗 ⟩|𝑒𝑖⟩

𝐶↦→

(b) Rules for the quantum mapping

𝑃 ⊢ 𝑄
𝑝 · 𝑃 ⊢ 𝑝 ·𝑄 P

⊢
1 · 𝑃 ⊣⊢ 𝑃 P

𝐼

(𝑝 ≤ 0 ∨ 𝑝 > 1) ∧ 𝑝 · 𝑃 ⊢ false P
⊥

𝑝 · (𝑃 ∧𝑄) ⊣⊢ 𝑃 ∧ 𝑝 ·𝑄 P 𝑝 · (𝑝 ′ · 𝑃) ⊣⊢ (𝑝𝑝 ′) · 𝑃 ∧ 0 < 𝑝, 𝑝 ′ ≤ 1
P𝐽

𝑝 · (𝑃 ∧𝑄) ⊣⊢ (𝑝 · 𝑃) ∧ (𝑝 ·𝑄) P
∧

𝑝 · (𝑃 ∨𝑄) ⊣⊢ (𝑝 · 𝑃) ∨ (𝑝 ·𝑄) P
∨

(c) Rules for the fractional conjunction

𝑃 ⊢ true ⊤ false ⊢ 𝑃 ⊥ |= 𝑃 ⇒ 𝑡 = 𝑡 ′

𝑃 ⊢ 𝑃 [𝑡/𝑡 ′]
𝑆
=

(d) Useful rules in classical logic

Fig. 8. Inference rules for rewriting predicates

Reasoning about the probabilities of pure predicates. We introduce the following notation

to reason about the probabilities of pure predicates, particularly the probabilities of the measure-

ments. Let 𝑄 be a pure formula. We use the notation P(𝑄) to express the probability that 𝑄 holds.

Also, we let 𝐹 be a predicate in the closure of {↦→,∧,∨, ★◦}, i.e.:
𝐹 ::= 𝑒∗ ↦→ |𝑣⟩ | 𝐹 ★◦ 𝐹 | 𝐹 ∧ 𝐹 | 𝐹 ∨ 𝐹 (12)

Here 𝐹 represents the pure states with probability 1 and thus 𝑝 · 𝐹 represents the pure states

with probability 𝑝 . Ideally, we would like to interpret P(𝑄) using the following entailment rule:

𝑃 ∧𝑄 ⊢ 𝑝 · 𝐹 ∧ 𝑝 > 0

𝑃 ⊢ P(𝑄) = 𝑝
P (first attempt)

(13)

That is, if the quantum pure states in which 𝑄 holds have probability 𝑝 > 0 then P(𝑄) = 𝑝 .

However, this is semantically incorrect since 𝑄 can hold in multiple quantum pure states and thus

the probability should be greater than 𝑝 in general. Changing ‘=’ to ‘≥’ — i.e. P(𝑄) ≥ 𝑝 — fixes

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 36. Publication date: January 2022.

36:12 Xuan-Bach Le, Shang-Wei Lin, Jun Sun, and David Sanan

1 𝑖 := 0;

2 while 𝑖 < 𝑛 do
3 H(𝑞∗ [𝑖]);
4 𝑖 := 𝑖 + 1;

(a) The operator’s code

𝑛
𝑞∗ [0, 𝑛 − 1] : |0𝑛⟩ H

3

(b) The operator’s circuit design

Fig. 9. Hadamard operator for 𝑛 qubitsH𝑛

the above issue but also weakens the reasoning quite significantly. To compromise, one can use a

slightly stronger rule which infers that P(𝑄) is a multiple of 𝑝:

𝑃 ∧𝑄 ⊢ 𝑝 · 𝐹 ∧ 𝑝 > 0

exist an integer 𝑛 ≥ 1. 𝑃 ⊢ P(𝑄) = 𝑛𝑝 ≤ 1

P
(14)

In particular, if 𝑝 > 1

2
then 𝑛 = 1 and thus P(𝑄) = 𝑝 . Also the above rule automatically gives

us the lower bound P(𝑄) ≥ 𝑝 . As a technicality, the value 𝑝 needs to be unique for the predicate

P(𝑄) = 𝑝 to be well-defined. This can be justified by the following lemma:

Lemma 5.1. Suppose the two predicates 𝑝 · 𝐹 and 𝑝 ′ · 𝐹 ′ where 𝑝, 𝑝 ′ ∈ (0, 1] are satisfied by the
same program state. Then 𝑝 = 𝑝 ′.

For example, the following formula captures the measurement of the state
|0⟩+ |1⟩√

2

:

𝑃
△
=

(
𝑥 = 0 ∧ 1

2

· 𝑞∗ [0] ↦→ |0⟩
)
∨

(
𝑥 = 1 ∧ 1

2

· 𝑞∗ [0] ↦→ |1⟩
)

(15)

As 𝑃 entails the implication 𝑥 = 1 → 1

2
· 𝑞∗ [0] ↦→ |0⟩, it follows that P(𝑥 = 1) = 𝑛

2
for some

integer 𝑛 ≥ 1 and so P(𝑥 = 1) ≥ 1

2
.

6 CASE STUDIES
We apply our framework to verify the following programs: 𝑛-qubit Hadamard transformation §6.1,

Deutsch’s algorithm §6.2 together with its generalization Deutsch–Jozsa’s algorithm §6.3 [Deutsch

and Jozsa 1992], and finally Grover’s algorithm [Grover 1996] §6.4.

The two well-known Deutsch–Jozsa’s algorithm and Grover’s algorithm showcase the superior

computation power of quantum computing over classical computing. Despite being small programs,

they require sophisticated mathematics to encode the superposition and need significant efforts to

be formally verified. In particular, it takes more than 3000 line of code [Liu et al. 2019, §5.2] for the

mechanization of the Grover’s algorithm in Isabelle/HOL using Ying’s framework [Ying 2012].

6.1 Hadamard Transformation for Multiple Qbits
Fig. 9 presents the implementation of the Hadamard operatorH𝑛 for 𝑛 qubits using the Hadamard

operatorsH for a single qubit. The code ofH𝑛 in Fig. 9a is a loop whereH is applied to each qubit

in the array 𝑞∗. At the circuit level in Fig. 9b, this is equivalent to applying 𝑛 Hadamard gates to the

qubits in 𝑞∗. This example illustrates the use of loop invariant in our framework. Also, the operator

H𝑛 is utilized in both Deutsch–Jozsa’s algorithm §.6.3 and Grover’s algorithm §.6.4.

In Fig. 10, we prove thatH𝑛 transforms the state of the each qubit in 𝑞∗ from |0⟩ into |+⟩. Accord-
ingly, we let

★◦𝑛−1
𝑘=0 𝑞

∗ [𝑘] ↦→ |0⟩ be our precondition and
★◦𝑛−1
𝑘=0 𝑞

∗ [𝑘] ↦→ |+⟩ be our postcondition.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 36. Publication date: January 2022.

AQuantum Interpretation of Separating Conjunction Based on Separation Logic 36:13

1 { ★◦𝑛−1
𝑘=0 𝑞

∗ [𝑘] ↦→ |0⟩ }
2 𝑖 := 0;

3 { 𝑖 = 0 ∧
(
★◦𝑛−1
𝑘=0 𝑞

∗ [𝑘] ↦→ |0⟩
)
}

4 { 𝐼 : 𝑖 ≤ 𝑛 ∧
(
★◦𝑖−1
𝑘=0 𝑞

∗ [𝑘] ↦→ |+⟩
)

★◦ (
★◦𝑛−1
𝑘=𝑖 𝑞

∗ [𝑘] ↦→ |0⟩
)
}(

★◦↦→, ★◦∧)
5 while 𝑖 < 𝑛 do

6 { 𝑖 < 𝑛 ∧
(
★◦𝑖−1
𝑘=1 𝑞

∗ [𝑘] ↦→ |+⟩
)

★◦ (
★◦𝑛−1
𝑘=𝑖 𝑞

∗ [𝑘] ↦→ |0⟩
)
}(★◦∧)

7 ⇐⇒ { 𝑞∗ [𝑖] ↦→ |0⟩ } H (𝑞∗ [𝑖]); { 𝑞∗ [𝑖] ↦→ |+⟩ }

8 { 𝑖 < 𝑛 ∧
(
★◦𝑖
𝑘=0 𝑞

∗ [𝑘] ↦→ |+⟩
)

★◦ (
★◦𝑛−1
𝑘=𝑖+1 𝑞

∗ [𝑘] ↦→ |0⟩
)
}(

★◦↦→, ★◦∧)
9 𝑖 := 𝑖 + 1;

10 { 𝐼 : 𝑖 ≤ 𝑛 ∧
(
★◦𝑖−1
𝑘=0 𝑞

∗ [𝑘] ↦→ |+⟩
)

★◦ (
★◦𝑛−1
𝑘=𝑖 𝑞

∗ [𝑘] ↦→ |0⟩
)
}

11 { 𝐼 ∧ 𝑖 ≥ 𝑛 }
12 { ★◦𝑛−1

𝑘=0 𝑞
∗ [𝑘] ↦→ |+⟩ }(★◦𝐼)

Fig. 10. Proof of the Hadamard operator for 𝑛 qubits H𝑛

1 𝑞∗ := qbit(2);
2 H(𝑞∗ [0]);
3 X(𝑞∗ [1]);
4 H(𝑞∗ [1]);
5 U𝑓 (𝑞∗);
6 H(𝑞∗ [0]);
7 𝑣 := measure(𝑞∗ [0]);
8 dispose(𝑞∗);

(a) The algorithm’s code

7

𝑞∗ [0] : |0⟩ H
U𝑓

H

𝑞∗ [1] : |0⟩ X H

2 5 6

3 4

(b) The algorithm’s circuit design

Fig. 11. Deutsch’s algorithm

First, we apply the rule Assign to derive the postcondition for the assignment 𝑖 := 0. Using the

entailment rules in Fig. 8, we arrive at the invariant 𝐼 in line 4. Here 𝐼 partitions the qubits in 𝑞∗ into
the transformed part 𝑞∗ [0, 𝑖 − 1] and the residue part 𝑞∗ [𝑖, 𝑛 − 1]. Besides, the condition 𝑖 ≤ 𝑛 in 𝐼

allows us to derive 𝑖 = 𝑛 after the loop. Using the rule While, we enter the loop with the predicate

𝐼 ∧ 𝑖 < 𝑛. In line 7, we apply the frame rule QFrame and the rule Trans to reason about the state

transformation of the qubit 𝑞∗ [𝑖]. We then apply the rule Assign for the assignment 𝑖 := 𝑖 + 1 and

recover the invariant 𝐼 . Using the rule While, we exit the loop with the predicate 𝐼 ∧ 𝑖 ≥ 𝑛 from

which we can derive the postcondition
★◦𝑛−1
𝑘=0 𝑞

∗ [𝑘] ↦→ |+⟩.

6.2 Deutsch’s Algorithm
Fig. 11 presents Deutsch’s algorithm [Deutsch and Jozsa 1992] with its code on the left (Fig.11a)

and its quantum circuit on the right (Fig. 11b). The number above each gate on the right matches

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 36. Publication date: January 2022.

36:14 Xuan-Bach Le, Shang-Wei Lin, Jun Sun, and David Sanan

1 { |emp⟩ }
2 𝑞∗ := qbit(2);
3 { 𝑞∗ [0] ↦→ |0⟩ ★◦ 𝑞∗ [1] ↦→ |1⟩ ∧ |𝑞∗ | = 2 }
4 ⇐⇒ { 𝑞∗ [0] ↦→ |0⟩ }H (𝑞∗ [0]); { 𝑞∗ [0] ↦→ |+⟩ }
5 =⇒ { 𝑞∗ [1] ↦→ |0⟩ }
6 X(𝑞∗ [1]);
7 { 𝑞∗ [1] ↦→ |1⟩ }
8 H(𝑞∗ [1]);
9 ⇐= { 𝑞∗ [1] ↦→ |−⟩ }
10 { 𝑞∗ [0] ↦→ |+⟩ ★◦ 𝑞∗ [1] ↦→ |−⟩ ∧ |𝑞∗ | = 2 }
11 { 𝑞∗ [0, 1] ↦→ 1

2
|0⟩|0⟩ − 1

2
|0⟩|1⟩ + 1

2
|1⟩|0⟩ − 1

2
|1⟩|1⟩ ∧ |𝑞∗ | = 2 }

12 =⇒ { 𝑞∗ [0, 1] ↦→ 1

2
|0⟩|0⟩ − 1

2
|0⟩|1⟩ + 1

2
|1⟩|0⟩ − 1

2
|1⟩|1⟩ }

13 U𝑓 (𝑞∗ [0, 1]);
14 { 𝑞∗ [0, 1] ↦→ 1

2
|0⟩|𝑓 (0)⟩ − 1

2
|0⟩|1 ⊕ 𝑓 (0)⟩ + 1

2
|1⟩|𝑓 (1)⟩ − 1

2
|1⟩|1 ⊕ 𝑓 (1)⟩ }

15 ⇐= { 𝑞∗ [0] ↦→ 1√
2

|0⟩ + (−1) 𝑓 (0)⊕𝑓 (1)√
2

|1⟩ ★◦ 𝑞∗ [1] ↦→ (−1) 𝑓 (0) |−⟩ }

16 =⇒ { 𝑞∗ [0] ↦→ 1√
2

|0⟩ + (−1) 𝑓 (0)⊕𝑓 (1)√
2

|1⟩ }
17 H(𝑞∗ [0]);
18 { 𝑞∗ [0] ↦→ 1+(−1) 𝑓 (0)⊕𝑓 (1)

2
|0⟩ + 1−(−1) 𝑓 (0)⊕𝑓 (1)

2
|1⟩ }

19 { (𝑓 (0) ⊕ 𝑓 (1) = 0 ∧ 𝑞∗ [0] ↦→ |0⟩) ∨ (𝑓 (0) ⊕ 𝑓 (1) = 1 ∧ 𝑞∗ [0] ↦→ |1⟩) }
20 𝑣 := measure(𝑞∗ [0]);
21 ⇐= { (𝑣 = 0 ∧ 𝑓= ∧ 𝑞∗ [0] ↦→ |0⟩) ∨ (𝑣 = 1 ∧ 𝑓≠ ∧ 𝑞∗ [0] ↦→ |1⟩) }
22 { (𝑣 = 0 ∧ 𝑓= ∧ |𝑞∗ | = 2 ∧ 𝑞∗ [0, 1] ↦→ . . .) ∨ (𝑣 = 1 ∧ 𝑓≠ ∧ |𝑞∗ | = 2 ∧ 𝑞∗ [0, 1] ↦→ . . .) }
23 =⇒ { |𝑞∗ | = 2 ∧ 𝑞∗ [0, 1] ↦→ . . . }
24 dispose(𝑞∗);
25 ⇐= { |emp⟩ }
26 { (𝑣 = 0 ∧ 𝑓= ∧ |emp⟩) ∨ (𝑣 = 1 ∧ 𝑓≠ ∧ |emp⟩) }
27 { (𝑓= ↔ 𝑣 = 0) ∧ (𝑓≠ ↔ 𝑣 = 1) ∧ |emp⟩ }

Fig. 12. Proof of Deutsch’s algorithm

the number of the corresponding statement on the left. Deutsch’s algorithm is a special case of

Deutsch–Jozsa’s algorithm for 𝑛 qubits [Deutsch and Jozsa 1992]. We will explore the latter in §6.3.

The problem is as follows. Let 𝑓 : {0, 1}𝑛 ↦→ {0, 1} be a Boolean function whose domain consists

of bit strings of length 𝑛. We say 𝑓 is constant if it is 0 on all outputs or 1 on all outputs, and is

balanced if exactly half of its outputs is 0 and the other half is 1. Knowing that 𝑓 is either constant

or balanced, we want to determine its type efficiently. Note that a classical computer needs to

compute the entire domain of 𝑓 in the worst case to obtain the answer. Thanks to the quantum

superposition, quantum computer only needs to compute 𝑓 once for the result, and thus achieves

an exponentially computational speedup. The function 𝑓 is encoded by an oracle quantum gate

U𝑓 : V𝑛+1B ↦→ V𝑛+1B that maps each basic vector |𝑒𝑖⟩|𝑒 ′𝑗 ⟩ — where |𝑒𝑖⟩ ∈ B𝑛 and |𝑒 ′𝑗 ⟩ ∈ B — to the

basis vector |𝑒𝑖⟩|𝑒 ′𝑗 ⊕ 𝑓 (𝑒𝑖)⟩. Here ⊕ is the Boolean XOR operator and the last ancillary qubit inU𝑓

stores the result of the computation. Accordingly, U𝑓 can be expressed in the following Dirac

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 36. Publication date: January 2022.

AQuantum Interpretation of Separating Conjunction Based on Separation Logic 36:15

1 H𝑛 (𝑞∗);
2 H(𝑝∗);
3 U𝑓 (𝑞∗𝑝∗);
4 H𝑛 (𝑞∗);
5 𝑣 := measure(𝑞∗);

(a) The algorithm’s code

5

𝑛
𝑞∗ : |0𝑛⟩ H𝑛

U𝑓

H𝑛

𝑝∗ : |1⟩ H

1 3 4

2

(b) The algorithm’s circuit design

Fig. 13. Deutsch–Jozsa’s algorithm

notation:

U𝑓
△
=

∑
𝑖, 𝑗

|𝑒𝑖⟩|𝑒 ′𝑗 ⊕ 𝑓 (𝑒𝑖)⟩⟨𝑒𝑖 |⟨𝑒 ′𝑗 | where |𝑒𝑖⟩ ∈ B𝑛 and |𝑒 ′𝑗 ⟩ ∈ B (16)

Deutsch’s algorithm solves the special case when 𝑛 = 1 and thus every 𝑓 : {0, 1} ↦→ {0, 1} is
either constant or balanced. In particular, the operator U𝑓 for two qubits is expressed as:

U𝑓 = |0⟩|𝑓 (0)⟩⟨0|⟨0| + |0⟩|1 ⊕ 𝑓 (0)⟩⟨0|⟨1| + |1⟩|𝑓 (1)⟩⟨1|⟨0| + |1⟩|1 ⊕ 𝑓 (1)⟩⟨1|⟨1| (17)

We write 𝑓= to indicate that 𝑓 is constant and 𝑓≠ to indicate that 𝑓 is balanced. The two predicates

can be defined as:

𝑓=
△
= 𝑓 (0) ⊕ 𝑓 (1) = 0 𝑓≠

△
= 𝑓 (0) ⊕ 𝑓 (1) = 1 (18)

We explain the code in Fig. 11a. Initially, 𝑞∗ is allocated with two qubits. The first qubit is

transformed by the Hadamard operator H whereas the other qubit is transformed by the Pauli-X

operator X △
= |0⟩⟨1| + |1⟩⟨0| followed byH . The operator X — which is similar to the classical NOT

gate — allows us to flip the state of 𝑞∗ [1] from |0⟩ to |1⟩. After that,U𝑓 is applied to both qubits

and H is applied to the first qubit. Then the state of the first qubit is measured and the result is

assigned to 𝑣 . Finally, the qubits in 𝑞∗ are deallocated. Deutsch’s algorithm ensures that the value

of 𝑣 implies the type of 𝑓 , i.e. 𝑣 = 0 iff 𝑓 is constant and 𝑣 = 1 iff 𝑓 is balanced. The qubit allocation

and deallocation are not present in the original algorithm but are amended there to illustrate the

rules for qubit allocation/deallocation.

We now navigate through the proof in Fig. 12. The ruleQubit is applied to derive the state of

𝑞∗ [0, 1] after the allocation. In lines 4–9, the states of the qubits in 𝑞∗ are first reasoned locally using

the frame rule and then combined in line 10. We apply the

★◦↦→–rule to obtain the combined state of

𝑞∗ [0, 1] and then use the rule Trans to derive the postcondition of the transformation U𝑓 (𝑞∗ [0, 1]).

In line 15, we tensor-factorize the combined state of 𝑞∗ [0, 1] and apply the

★◦↦→–rule to split the

states of 𝑞∗ [0] and 𝑞∗ [1]. In lines 16-21, the state of 𝑞∗ [0] is reasoned locally. After applying H ,

the state of 𝑞∗ [0] is |0⟩ iff 𝑓 is constant and |1⟩ iff 𝑓 is balanced. As a result, measuring 𝑞∗ [0] is
sufficient to determine the type of 𝑓 . Line 21 captures the postcondition of the measurement where

𝑣 = 0 when 𝑓 is constant and 𝑣 = 1 otherwise.

The remaining proof reasons about the deallocation of 𝑞∗. To derive the postcondition, we first

apply the rule Disj to split the disjunction in line 22, then the frame rule to frame out the classical

variable 𝑣 , followed by the rule Dis to deallocate 𝑞∗.

6.3 Deutsch–Jozsa’s Algorithm
We now solve the general case of Deutsch–Jozsa’s algorithm for 𝑛 qubits [Deutsch and Jozsa

1992]. The program and its circuit are given in Fig. 13. We assume that 𝑛 qubits in 𝑞∗ [0, 𝑛 − 1]

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 36. Publication date: January 2022.

36:16 Xuan-Bach Le, Shang-Wei Lin, Jun Sun, and David Sanan

have states |0⟩ and the single qubit in 𝑝∗ [0] as state |1⟩ initially. For convenience, we write 𝑞∗ for
𝑞∗ [0, 𝑛 − 1] and 𝑝∗ for 𝑝∗ [0]. The algorithm executes the following steps sequentially:

(1) ApplyH𝑛 (the 𝑛-bit Hadamard gate, §6.1) to 𝑞∗ and H to 𝑝∗

(2) ApplyU𝑓 to the concatenation array 𝑞∗𝑝∗

(3) ApplyH𝑛 to 𝑞∗. Then measure 𝑞∗ and assign the result to 𝑣 .

The type of 𝑓 is determined via the following mathematical fact:

Lemma 6.1. Let 𝛼 △
=

(
1

2
𝑛

∑
2
𝑛−1
𝑖=0 (−1) 𝑓 (𝑖)

)
2

. Then 𝛼 = 1 if 𝑓 is constant and 𝛼 = 0 if 𝑓 is balanced.

Intuitively, 𝛼 represents the probability associated with the state |0𝑛⟩ in 𝑞∗. Thus the state |0𝑛⟩
is measured (i.e. 𝑣 = 0) with probability 1 if 𝑓 is constant and with probability 0 (i.e. 𝑣 ≠ 0) if 𝑓 is

balanced. The former also implies that the probabilities of other outcomes are all zero. As before,

we use the predicates 𝑓= and 𝑓≠ to indicate that the function 𝑓 is constant and balanced respectively.

We introduce several intermediate computation results here to offload the complexity of the

proof. Let 𝑖 · 𝑗 △
=

⊕𝑛−1
𝑘=0 𝑖𝑘 𝑗𝑘 be the XOR-sum of bit product and 𝑔(𝑗) △

= 1

2
𝑛

∑
2
𝑛−1
𝑖=0 (−1) 𝑓 (𝑖) (−1)𝑖 · 𝑗 .

The states of the qubits after applying U𝑓 andH𝑛 satisfy the following properties:

Lemma 6.2. Let |𝑣⟩ △
= 1√

2
𝑛

∑
2
𝑛−1
𝑖=0 (−1) 𝑓 (𝑖) and |𝑣1⟩

△
=

∑
2
𝑛−1
𝑗=0 𝑔(𝑗) | 𝑗⟩. Then:

U𝑓 (|+𝑛⟩|−⟩) = |𝑣⟩|−⟩ and H𝑛 (|𝑣⟩) = |𝑣1⟩

Note that 𝑔(0) = 1

2
𝑛

∑
2
𝑛−1
𝑖=0 (−1) 𝑓 (𝑖) and so 𝛼 = |𝑔(0) |2 is the probability associated with the state

|0𝑛⟩ in |𝑣1⟩. Thus Lemma. 6.1 gives us the desired result.

We take a close look at Fig. 14. In lines 2-3, the states of 𝑞∗ and 𝑝∗ are transformed into |+𝑛⟩ and
|−⟩ respectively by the Hadamard operators. Then the combined state of 𝑞∗ and 𝑝∗ is transformed

into |𝑣⟩|−⟩ by U𝑓 . This allows us to apply the

★◦↦→–rule to split the states of 𝑞∗ and 𝑝∗ separately.
In lines 8-12, we use the frame rule to reason about the qubits in 𝑞∗ locally. The results of the
transformation by H𝑛 and of the measurement follow from Lemma. 6.2. In line 13, we use the

entailment rules in Fig. 8 — in particular the P⊥–rule to eliminate infeasible measurement outcomes

— and reach the postcondition as desired.

6.4 Grover’s Algorithm
Fig. 15 displays the implementation of Grover’s algorithm [Grover 1996] with its code on the

left (Fig. 15a) and its circuit on the right (Fig. 15b). This algorithm finds a particular input of a

function 𝑓 — with high certainty — using only O(
√
𝑁) evaluations of 𝑓 , where 𝑁 > 1 is the size

of 𝑓 ’s domain. In contrast, classical algorithms cannot solve this problem with less than O(𝑁)
evaluations. Moreover, Grover’s algorithm is asymptotically optimal [Bennett et al. 1997]. For

convenience, we assume that 𝑁 = 2
𝑛
and 𝑓 maps each basic vector in B𝑛 to {0, 1} such that

𝑓 (|𝑒𝑖⟩) = 1 iff 𝑖 = 𝜔 and 0 otherwise. Our task is to identify the index𝜔 . The function 𝑓 is computed

by the following quantum operator G𝑓 where the last ancillary qubit in G𝑓 stores the computation

of the function 𝑓 :

G𝑓
△
=

∑
𝑖, 𝑗

|𝑒𝑖⟩|𝑒 ′𝑗 ⊕ 𝑓 (|𝑒𝑖⟩)⟩⟨𝑒𝑖 |⟨𝑒 ′𝑗 | where |𝑒𝑖⟩ ∈ B𝑛 and |𝑒 ′𝑗 ⟩ ∈ B (19)

We explain the code in Fig. 15a. Initially, there are 𝑛 qubits of state |0⟩ in 𝑞∗ [0, 𝑛 − 1] and a single
qubit of state |1⟩ in 𝑝∗ [0]. For convenience, we refer the array segments 𝑞∗ [0, 𝑛 − 1] and 𝑝∗ [0] as
𝑞∗ and 𝑝∗ respectively. Grover’s algorithm executes the following sequence of steps:

(1) Apply the Hadamard operators H𝑛 to 𝑞∗, and H to 𝑝∗

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 36. Publication date: January 2022.

AQuantum Interpretation of Separating Conjunction Based on Separation Logic 36:17

1 { 𝑞∗ ↦→ |0𝑛⟩ ★◦ 𝑝∗ ↦→ |1⟩ }
2 ⇐⇒ { 𝑞∗ ↦→ |0𝑛⟩ }H𝑛 (𝑞∗); { 𝑞∗ ↦→ |+𝑛⟩ }
3 ⇐⇒ { 𝑝∗ ↦→ |1⟩ }H (𝑝∗); { 𝑝∗ ↦→ |−⟩ }
4 { 𝑞∗𝑝∗ ↦→ |+𝑛⟩|−⟩ }
5 U𝑓 (𝑞∗𝑝∗);
6 { 𝑞∗𝑝∗ ↦→ |𝑣⟩|−⟩ }
7 { 𝑞∗ ↦→ |𝑣⟩ ★◦ 𝑝∗ ↦→ |−⟩ }
8 =⇒ { 𝑞∗ ↦→ |𝑣⟩ }
9 H𝑛 (𝑞∗);
10 { 𝑞∗ ↦→ |𝑣1⟩ }
11 𝑣 := measure(𝑞∗);
12 ⇐= { ∨

𝑖 (𝑣 = 𝑖 ∧ |𝑔(𝑖) |2 · 𝑞∗ ↦→ |𝑖⟩) }
13 { ∨

𝑖 (𝑣 = 𝑖 ∧ |𝑔(𝑖) |2 · 𝑞∗𝑝∗ ↦→ |𝑖⟩|−⟩) }
14 { (𝑣 = 0 ↔ 𝑓=) ∧ (𝑣 ≠ 0 ↔ 𝑓≠) }

Fig. 14. Proof of Deutsch–Jozsa’s algorithm

1 H𝑛 (𝑞∗);
2 H(𝑝∗);
3 𝑖 := 0;

4 while 𝑖 < 𝑚 do
5 G𝑓 (𝑞∗𝑝∗);
6 D(𝑞∗);
7 𝑖 := 𝑖 + 1;

8 𝑣 := measure(𝑞∗);

(a) The algorithm’s code

repeat𝑚 ∈ O(
√
𝑁) times

8

𝑛
𝑞∗ : |0𝑛⟩ H𝑛

G𝑓

D

𝑝∗ : |1⟩ H

1 5 6

2

(b) The algorithm’s circuit design

Fig. 15. Grover’s algorithm

(2) Apply the operator G𝑓 to the concatenation 𝑞∗𝑝∗ and then the diffusion operator D to 𝑞∗.
The specs of D is given as:

D △
= 2|+𝑛⟩⟨+𝑛 | − I𝑛 (20)

Repeat this step𝑚 ∈ O(
√
𝑁) times to amplify the magnitude of |𝑒𝜔 ⟩ in 𝑞∗

(3) Measure 𝑞∗ and assign the result to 𝑣 .

We encode the loop invariant 𝐼 in step 2 using several ingredients from trigonometry. Let

|𝑣⟩ △
=

∑
𝑘≠𝜔 |𝑒𝑘⟩/

√
𝑁 − 1 and 𝑎𝑖

△
= cos ((2𝑖 + 1)𝛼), 𝑏𝑖

△
= sin ((2𝑖 + 1)𝛼) where 𝛼 △

= arcsin (1/
√
𝑁).

We express |+𝑛⟩ — the state of 𝑞∗ before the loop — as the combination of the two orthornormal

vectors {|𝑣⟩, |𝑒𝜔 ⟩} as follows:

|+𝑛⟩ = 1

√
𝑁

∑
𝑘

|𝑒𝑘⟩ = cos (𝛼) |𝑣⟩ + sin (𝛼) |𝑒𝜔 ⟩ = 𝑎0 |𝑣⟩ + 𝑏0 |𝑒𝜔 ⟩ where ⟨𝑣 |𝑒𝜔 ⟩ = 0 (21)

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 36. Publication date: January 2022.

36:18 Xuan-Bach Le, Shang-Wei Lin, Jun Sun, and David Sanan

1 { 𝑞∗ ↦→ |0𝑛⟩ ★◦ 𝑝∗ ↦→ |1⟩ }
2 ⇐⇒ { 𝑞∗ ↦→ |0𝑛⟩ }H𝑛 (𝑞∗); { 𝑞∗ ↦→ |+𝑛⟩ }
3 ⇐⇒ { 𝑝∗ ↦→ |1⟩ }H (𝑝∗); { 𝑝∗ ↦→ |−⟩ }
4 { 𝑞∗ ↦→ |+𝑛⟩ ★◦ 𝑝∗ ↦→ |−⟩ }
5 𝑖 := 0;

6 { 𝑖 = 0 ∧ 𝑞∗ ↦→ |+𝑛⟩ ★◦ 𝑝∗ ↦→ |−⟩ }
7 { 𝐼 : 𝑖 ≤ 𝑚 ∧ 𝑞∗ ↦→ 𝑎𝑖 |𝑣⟩ + 𝑏𝑖 |𝑒𝜔 ⟩ ★◦ 𝑝∗ ↦→ |−⟩ }
8 while 𝑖 < 𝑚 do
9 { 𝑖 < 𝑚 ∧ 𝑞∗𝑝∗ ↦→ (𝑎𝑖 |𝑣⟩ + 𝑏𝑖 |𝑒𝜔 ⟩) ⊗ |−⟩ }
10 ⇐⇒ { 𝑞∗𝑝∗ ↦→ (𝑎𝑖 |𝑣⟩ + 𝑏𝑖 |𝑒𝜔 ⟩) ⊗ |−⟩ }G𝑓 (𝑞∗𝑝∗); { 𝑞∗𝑝∗ ↦→ (𝑎𝑖 |𝑣⟩ − 𝑏𝑖 |𝑒𝜔 ⟩) ⊗ |−⟩ }
11 ⇐⇒ { 𝑞∗ ↦→ 𝑎𝑖 |𝑣⟩ − 𝑏𝑖 |𝑒𝜔 ⟩ }D(𝑞∗); { 𝑞∗ ↦→ 𝑎𝑖+1 |𝑣⟩ + 𝑏𝑖+1 |𝑒𝜔 ⟩ }
12 { 𝑖 < 𝑚 ∧ 𝑞∗ ↦→ 𝑎𝑖+1 |𝑣⟩ + 𝑏𝑖+1 |𝑒𝜔 ⟩ ★◦ 𝑝∗ ↦→ |−⟩ }
13 𝑖 := 𝑖 + 1;

14 { 𝐼 : 𝑖 ≤ 𝑚 ∧ 𝑞∗ ↦→ 𝑎𝑖 |𝑣⟩ + 𝑏𝑖 |𝑒𝜔 ⟩ ★◦ 𝑝∗ ↦→ |−⟩ }
15 { 𝐼 ∧ 𝑖 ≥ 𝑚 }
16 { 𝑞∗ ↦→ 𝑎𝑚 |𝑣⟩ + 𝑏𝑚 |𝑒𝜔 ⟩ ★◦ 𝑝∗ ↦→ |−⟩ }
17 =⇒ { 𝑞∗ ↦→ 𝑎𝑚 |𝑣⟩ + 𝑏𝑚 |𝑒𝜔 ⟩ }
18 𝑣 := measure(𝑞∗);
19 ⇐= { (𝑣 = 𝑒𝜔 ∧ |𝑏𝑚 |2 · 𝑞∗ ↦→ |𝑒𝜔 ⟩) ∨ (∨𝑘≠𝜔 𝑣 = 𝑒𝑘 ∧ |𝑎𝑚 |2

𝑁−1 · 𝑞∗ ↦→ |𝑒𝑘⟩) }
20 { P(𝑣 = 𝑒𝜔) ≥ |𝑏𝑚 |2 }

Fig. 16. Proof of Grover’s algorithm

Each iteration in step 2 transforms the state of 𝑞∗ from 𝑎𝑖 |𝑣⟩ +𝑏𝑖 |𝑒𝜔 ⟩ into 𝑎𝑖+1 |𝑣⟩ +𝑏𝑖+1 |𝑒𝜔 ⟩. Thus
we pick 𝐼 to be the following predicate where the counter 𝑖 is set to 0 initially:

𝐼
△
= 𝑖 ≤ 𝑚 ∧ 𝑞∗ ↦→ 𝑎𝑖 |𝑣⟩ + 𝑏𝑖 |𝑒𝜔 ⟩ ★◦ 𝑝∗ ↦→ |−⟩ (22)

As for the choice of𝑚, we want the magnitude |𝑏𝑚 | of |𝑣𝜔 ⟩ after𝑚 iterations to be close to 1, i.e.

(2𝑚 + 1)𝛼 ≈ 𝜋/2 or𝑚 ≈ 𝜋/4𝛼 − 1/2 ≈ 𝜋
√
𝑁 /4− 1/2. Here we approximate arcsin (1/

√
𝑁) ≈ 1/

√
𝑁

using the Maclaurin series expansion. For correctness, we let the postcondition be:

P(𝑣 = 𝑒𝜔) = |𝑏𝑚 |2 (23)

That is, the probability associated with the outcome 𝑒𝜔 is |𝑏𝑚 |2. By the justification above, it

follows that |𝑏𝑚 |2 is close to 1 and so the outcome 𝑒𝜔 is mostly probable.

We explain the proof in Fig. 16. Lines 2-3 contain the local proofs for quantum transformations

H𝑛 (𝑞∗) and H(𝑝∗). The loop invariant 𝐼 is set in line 7. For each iteration, the operator G𝑓 is

applied to 𝑞∗𝑝∗ to flip the coefficient’s sign of |𝑒𝜔 ⟩ in 𝑞∗, i.e. from 𝑎𝑖 |𝑣⟩ + 𝑏𝑖 |𝑒𝜔 ⟩ to 𝑎𝑖 |𝑣⟩ − 𝑏𝑖 |𝑒𝜔 ⟩.
After that, the states of 𝑞∗ and 𝑝∗ become separable and the diffusion operator D is applied to 𝑞∗.
The result of this transformation follows from Lemma 6.3 below:

Lemma 6.3. D(𝑎𝑖 |𝑣⟩ − 𝑏𝑖 |𝑒𝜔 ⟩) = 𝑎𝑖+1 |𝑣⟩ + 𝑏𝑖+1 |𝑒𝜔 ⟩.
In line 14, the invariant 𝐼 is recovered after the increment of the counter 𝑖 . We exit the loop with

the predicate 𝐼 ∧ 𝑖 ≥ 𝑚 which allows us to deduce that the state of 𝑞∗ is 𝑎𝑚 |𝑣⟩ + 𝑏𝑚 |𝑒𝜔 ⟩. After 𝑞∗ is
measured, the predicate in line 19 implies that 𝑣 = 𝑒𝜔 → |𝑏𝑚 |2 · 𝑞∗ ↦→ |𝑒𝜔 ⟩. As |𝑏𝑚 |2 ≈ 1, we can

deduce that |𝑏𝑚 |2 > 1

2
. By applying the probability rule for pure predicates in §5.3, we reach the

postcondition as desired.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 36. Publication date: January 2022.

AQuantum Interpretation of Separating Conjunction Based on Separation Logic 36:19

7 OPERATIONAL SEMANTICS
We define the operational semantics and use it to prove the soundness of the framework in §5,

starting from the definition of quantum heaps in §7.1, then the forcing sematics for |= §7.2, to the

step semantics §7.3 and the Hoare triples in §7.4. Our semantics expresses quantum systems in

their pure states with tagged probabilities, which allows us to reuse the constructs of sequential

semantics for SL in [Yang and O’Hearn 2002]. We also discuss on the limitations of our framework

in §7.5.

We adopt the following notations for lists. We write nil for empty list, [𝑡1, . . . , 𝑡𝑛] for the list
enumeration, |𝑙 | for the length of 𝑙 , 𝑙⌢𝑙 ′ for the concatenation of 𝑙 and 𝑙 ′, 𝑙 [𝑛, 𝑛′] for the sublist of 𝑙
from index 𝑛 to 𝑛′

inclusively.

7.1 Quantum Heaps
We need several notations for the definition of quantum heaps. We write [𝑛] for the set {0, . . . , 𝑛−1}
where 𝑛 ∈ N. We call a bijective mapping 𝜎 : [𝑛] ↦→ [𝑛] an index permutation over [𝑛] — or n-perm
for short. We override 𝜎 to lists and vectors as follows where |𝑒𝑖⟩ ∈ B and |𝑒 ′𝑗 ⟩ ∈ B𝑛 :

𝜎 ([𝑡0, . . . , 𝑡𝑛−1]) = [𝑡𝜎 (0) , . . . , 𝑡𝜎 (𝑛−1)]
𝜎 (|𝑒0 . . . 𝑒𝑛−1⟩) = 𝜎 (|𝑒𝜎 (0) . . . 𝑒𝜎 (𝑛−1)⟩) 𝜎

(∑
𝑗 𝑎 𝑗 |𝑒 ′𝑗 ⟩

)
△
=

∑
𝑗 𝑎 𝑗𝜎 (|𝑒 ′𝑗 ⟩)

(24)

These permutations allows us to rearrange the qubits in the quantum states. Let Σ ⊆ N be a

finite set such that |Σ| = 𝑛. Its permutation set S(Σ) contains all permutations of Σ. For example:

S({1, 2, 3}) = {[1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 1, 2], [3, 2, 1]} (25)

We use Σ represent the ids of the qubits. We require that the quantum heap for Σ contains all of

the possible permutations of these qubits. This grants us the flexibility to conveniently rearrange

the qubits in the system. More importantly, it is a sufficient condition to make the heap join operator

commutative. With that in mind, the quantum heap is defined as follows:

Quantumheaps. The mappingQ : S(Σ) ↦→ V𝑛B\{0} is a quantum heap if for every list 𝑙 ∈ S(Σ)
and 𝑛-perm 𝜎 , we have

∥Q(𝑙)∥ = 1 and Q(𝜎 (𝑙)) = 𝜎 (Q(𝑙)) (26)

That is, each vector in the co-domain of Q has norm 1 and the state of the permuted list 𝜎 (𝑙)
is the permuted vector 𝜎 (Q(𝑙)). We call Σ the qubit domain of Q. We let the empty heap be the

singleton mapping Q𝑒 : {nil} ↦→ {1} from the empty list to the scalar 1.

Orientations. A single evaluationQ(𝑙) is sufficient to determine the entire quantum heapQ. This

is because for any list 𝑙 ′ ∈ S(Σ), there exists a unique 𝑛-perm 𝜎 such that 𝑙 ′ = 𝜎 (𝑙). Thus we have
Q(𝑙 ′) = Q(𝜎 (𝑙)) = 𝜎 (Q(𝑙)). For example, let ΣQ = {1, 2, 3} and Q([1, 2, 3]) = 1√

2

|101⟩ + 1√
2

|100⟩
then Q([2, 3, 1]) = 1√

2

|011⟩ + 1√
2

|001⟩,Q([3, 2, 1]) = 1√
2

|101⟩ + 1√
2

|001⟩, etc.
Let Q(𝑙) = |𝑣⟩. The singleton mapping Q𝑙 : {𝑙} ↦→ {|𝑣⟩} is called an orientation of Q. From the

above observation, the quantum heap Q can be defined from one of the orientations Q𝑙 since they

are just permutation of each others. Nevertheless, orientations are ease to handle and the constructs

over quantum heaps can be defined from the corresponding constructs over orientations via lifting.

For convenience, we often write Q(𝑙) = |𝑣⟩ to specify the orientation of the quantum heap Q.

Disjointness. We introduce the notion of disjointness for quantum heaps. Two heaps Q,Q ′
are

disjoint — denoted by Q ⊥ Q ′
— if their qubit domains ΣQ, ΣQ′ are disjoint, i.e. ΣQ ∩ ΣQ′ = ∅.

Furthermore, if Q ⊥ Q ′
we can join them using the heap join operator ⊗∪. The joined heap Q ⊗∪ Q ′

over ΣQ ∪ ΣQ′ is defined by the following orientation:

(Q ⊗∪ Q ′) (𝑙⌢𝑙 ′) △
= Q(𝑙) ⊗ Q ′(𝑙 ′) for some 𝑙 ∈ dom(Q), 𝑙 ′ ∈ dom(Q ′) (27)

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 36. Publication date: January 2022.

36:20 Xuan-Bach Le, Shang-Wei Lin, Jun Sun, and David Sanan

𝛿,Q, 𝜎 |= 𝑃 iff [[𝑃]]𝜎 = true
𝛿,Q, 𝜎 |= 𝑒∗ ↦→ |𝑣⟩ iff 𝛿 = 1 and Q([[𝑒∗]]𝜎) � [[|𝑣⟩]]𝜎
𝛿,Q, 𝜎 |= 𝑒 · 𝐹 iff 𝛿 ≤ [[𝑒]]𝜎 ≤ 1 and 𝛿/[[𝑒]]𝜎 ,Q, 𝜎 |= 𝐹

𝛿,Q, 𝜎 |= 𝐹1 ★◦ 𝐹2 iff exist Q1 ⊥ Q2 and 𝛿1, 𝛿2 ∈ (0, 1] s.t. 𝛿1𝛿2 = 𝛿 and

Q1
⊗∪ Q2 = Q and 𝛿1,Q1, 𝜎 |= 𝐹1 and 𝛿2,Q2, 𝜎 |= 𝐹2

Fig. 17. Forcing semantics for quantum predicates

We end this subsection by pointing out that the quantum heaps satisfy the axioms of Separation

Algebra in [Calcagno et al. 2007] — thus possess similar characteristics as of traditional heaps in SL.

Theorem 7.1. Let Q be the set of all quantum heaps. The structure (Q; ⊗∪;Q𝑒) is a Separation
Algebra. That is, the following properties are satisfied, where the left hand side in each equality is
defined iff the right hand side is defined:
(1) Identity element: Q ⊗∪ Q𝑒 = Q𝑒

⊗∪ Q = Q
(2) Commutative: Q1

⊗∪ Q2 = Q2
⊗∪ Q1

(3) Associative: (Q1
⊗∪ Q2) ⊗∪ Q3 = Q1

⊗∪ (Q2
⊗∪ Q3)

(4) Cancellative: Q ⊗∪ Q1 = Q ⊗∪ Q2 ⇒ Q1 = Q2.

7.2 Forcing Semantics
Our quantum program state 𝑠 is the triple (𝛿,Q, 𝜎) where 0 < 𝛿 ≤ 1 is the associated probability, Q
the quantum heap, and 𝜎 the variable stack that maps classical variables to integers and quantum

variables to lists of distinct integers. Intuitively, 𝜎 represents the classical component (i.e. the classical

computer) and Q represents the quantum component (i.e. the quantum circuit). The following

interactions between 𝜎 and Q are enforced to preserve the laws of physics:

(1) 𝜎 can only read measurements from Q, and

(2) Q can only read binary inputs from 𝜎 .

We write [[·]]𝜎 to denote the evaluation by the stack 𝜎 over expressions and pure predicates. In

particular, 𝜎 maps the empty array [] to the empty list nil, the sub-array 𝑞∗ [𝑒1, 𝑒2] to the sub-list

𝑙 [𝑣1, 𝑣2] where [[𝑞∗]]𝜎 = 𝑙 and [[𝑒𝑖]]𝜎 = 𝑣𝑖 , and the concatenation 𝑒
∗
1
𝑒∗
2
to the concatenated list 𝑙1

⌢𝑙2
where [[𝑒∗𝑖]]𝜎 = 𝑙𝑖 . For the concatenation, we further require that the intersection of 𝑙1 and 𝑙2 to be

empty to comply with the no-cloning theorem [Wootters and Zurek 1982] which states that the

quantum states cannot be perfectly cloned in general.

We write 𝑠 |= Φ to indicate that the quantum state 𝑠 satisfies the quantum predicate Φ. The
core interpretations of |= are given in Fig. 17. The interpretations for {∧,∨, ∃,∀} are standard and

so omitted. Pure formula 𝑃 is evaluated solely by 𝜎 and is independent of 𝛿 and Q. As for the
quantum mapping 𝑒∗ ↦→ |𝑣⟩, we require that the probability 𝛿 is 1, and Q([[𝑒∗]]𝜎) is equivalent to
the quantum state specified by |𝑣⟩. Here two states |𝑣1⟩ and |𝑣2⟩ are equivalent if they differ by a

scalar factor of modulus 1, i.e.:

|𝑣1⟩ � |𝑣2⟩ iff there exists 𝑐 ∈ C s.t. |𝑐 | = 1 and |𝑣1⟩ = 𝑐 |𝑣2⟩ (28)

Lemma 7.2. The relation � is an equivalence relation. Furthermore, it is norm-preserving and
closed under linear transformation and tensor product. More precisely, let V,V ′ be Hilbert spaces and
|𝑣1⟩, |𝑣2⟩ ∈ V and |𝑣 ′

1
⟩, |𝑣 ′

2
⟩ ∈ V ′ such that |𝑣1⟩ � |𝑣2⟩ and |𝑣 ′

1
⟩ � |𝑣 ′

2
⟩. Then:

∥𝑣1∥ = ∥𝑣2∥ T (|𝑣1⟩) � T (|𝑣2⟩) |𝑣1⟩ ⊗ |𝑣 ′
1
⟩ � |𝑣2⟩ ⊗ |𝑣 ′

2
⟩

where T is a linear transformation in V .

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 36. Publication date: January 2022.

AQuantum Interpretation of Separating Conjunction Based on Separation Logic 36:21

The equivalence relation � allows us to indiscriminate quantum states that are observably

indistinguishable, i.e. no sequence of quantum operators can differentiate one from the other.

For example, two quantum states
|0⟩+ |1⟩√

2

and
−|0⟩−|1⟩√

2

are observably indistinguishable and so are

considered to be equivalent. Semantic-wise, the equivalence relation helps us to ignore the residue

constant factor in the dispose statement.

For the fractional formula 𝑒 · 𝐹 , we need the evaluation [[𝑒]]𝜎 is in the range [𝛿, 1] — so that the

probability 𝛿/[[𝑒]]𝜎 is valid — and the state (𝛿/[[𝑒]]𝜎 ,Q, 𝜎) satisfies 𝐹 . The semantics of 𝐹1 ★◦ 𝐹2 is

similar to its SL counterpart 𝐹1 ★ 𝐹2. In detail, (𝛿,Q, 𝜎) satisfies 𝐹1 ★◦ 𝐹2 if the probability and the

quantum heap can be split into 𝛿 = 𝛿1, 𝛿2 and Q = Q1
⊗∪ Q2 such that (𝛿1,Q1, 𝜎) satisfies 𝐹1 and

(𝛿2,Q2, 𝜎) satisfies 𝐹2.
We write 𝐹1 |= 𝐹2 — that 𝐹2 is a logical consequence of 𝐹1 — if 𝑠 |= 𝑃 implies 𝑠 |= 𝑄 for every

quantum state 𝑠 . The soundness of our proof rules in Fig. 8 can be stated as follows:

Theorem 7.3. The proof rules in Fig. 8 are sound with respect to |=. That is, if 𝐹1 ⊢ 𝐹2 then 𝐹1 |= 𝐹2.

7.3 Step Relation
A normal configuration (config) ⟨𝑠, 𝑐⟩ consists of the state 𝑠 = (𝛿,Q, 𝜎) and the program 𝑐 . A normal

config is final if 𝑐 is skip. Besides, we have a faulty config abort for the cases where the program
accesses an invalid qubit outside the domain of the quantum heap.

We write𝐶1 { 𝐶2 for the step relation between the two configs𝐶1,𝐶2. The small-step operational

semantics for our quantum language is provided in Fig. 18. The step relation{ is non-deterministic

as a consequence of the quantum measurement: a config 𝐶 for the measurement statement can

lead to multiple configs that correspond to different outcomes of the measurement. Notation-wise,

we write 𝜎 [𝑣 ⇐ 𝑒] for the updated stack in which the value of 𝑣 in 𝜎 is updated to 𝑒 .

In Fig. 18a, we focus on the non-faulty steps starting from the config ⟨(𝛿,Q, 𝜎), 𝑐⟩. Note that
these steps construct new quantum heaps using orientations, i.e. the orientation Q(𝑙) = |𝑣⟩ is used
as a definition for the quantum heap Q itself.

(1) For the allocation 𝑞∗ := qbit(𝑒), the quantum heap Q is updated into Q1
⊗∪ Q where Q1

stores 𝑣 = [[𝑒]]𝜎 fresh qubits with the initial states |0⟩. Also, the variable 𝑞∗ is mapped to a list

consisting of 𝑣 consecutive numbers exclusive from the qubit domain of Q. These numbers

are the ids of the new qubits.

(2) For the deallocation dispose(𝑞∗), the quantum heap is assumed to be Q1
⊗∪ Q2 where the

heap Q1 contains the disposing qubits in 𝑞
∗
. This implies that the qubits in 𝑞∗ are separable

from the remaining qubits in Q2 and thus are safe for disposing. After the qubits in 𝑞∗ are
removed, Q1 becomes the empty heap and thus the new quantum heap is Q2. Besides, the

variable stack is updated by mapping the variable 𝑞∗ to the empty list nil.
(3) For the transformation G(𝑒∗), the operator G is first extended to G ⊗ I|𝑙 | to match the vector

dimension of the qubits in the quantum heap. The state of the quantum heap is updated by

applying G ⊗ I|𝑙 | to the quantum state.

(4) For the measurement 𝑣 := measure(𝑒∗), the measurement operator is non-deterministically

chosen to beM𝑘 = (|𝑒𝑘⟩⟨𝑒𝑘 |) ⊗ I|𝑙 | where the basis vector |𝑒𝑘⟩ matches the dimension of the

qubits in 𝑒∗. The probability 𝛿 is updated into 𝛿𝛿𝑘 where 𝛿𝑘 is the probability associated with

the measurement operator M𝑘 . The quantum heap is updated by applying the operator M𝑘

to the quantum state and then dividing by

√
𝛿𝑘 for normalization.

Fig. 18b contains the faulty steps that lead to the dead-end config abort. The step Sa forces the
program 𝑐1; 𝑐2 to go to abort if abort is reached from 𝑐1. As for the remaining quantum steps,

the config abort is reached whenever the program attempts to access a qubit outside the qubit

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 36. Publication date: January 2022.

36:22 Xuan-Bach Le, Shang-Wei Lin, Jun Sun, and David Sanan

[[𝑒]]𝜎 = 𝑣 > 0 𝑛, . . . , 𝑛 + 𝑣 − 1 ∉ ΣQ 𝑙 ′ = [𝑛, . . . , 𝑛 + 𝑣 − 1]
Q1 (𝑙 ′) = |0𝑣⟩ Q ′ = Q1

⊗∪ Q 𝜎 ′ = 𝜎 [𝑞∗ ⇐ 𝑙 ′]
⟨(𝛿,Q, 𝜎), 𝑞∗ := qbit(𝑒)⟩ { ⟨(𝛿,Q ′, 𝜎 ′), skip⟩ Qs

[[𝑞∗]]𝜎 ∈ dom(Q1) 𝜎 ′ = 𝜎 [𝑞∗ ⇐ nil]
⟨(𝛿,Q1

⊗∪ Q2, 𝜎), dispose(𝑞∗)⟩ { ⟨(𝛿,Q2, 𝜎
′), skip⟩ Ds

[[𝑒∗]]𝜎 = 𝑙 ′ 𝑙 ′⌢𝑙 ∈ dom(Q) G : V
|𝑙 ′ |
B ↦→ V |𝑙 ′ |

B Q ′(𝑙 ′⌢𝑙) = (G ⊗ I|𝑙 |) (Q(𝑙 ′⌢𝑙))
⟨(𝛿,Q, 𝜎),G(𝑒∗)⟩ { ⟨(𝛿,Q ′, 𝜎), skip⟩ Ts

[[𝑒∗]]𝜎 = 𝑙 ′ 𝑙 ′⌢𝑙 ∈ dom(Q) Q(𝑙 ′⌢𝑙) = |𝑎⟩ M𝑘 = (|𝑒𝑘⟩⟨𝑒𝑘 |) ⊗ I|𝑙 | where |𝑒𝑘⟩ ∈ B |𝑙 ′ |

𝛿𝑘 = ∥M𝑘 |𝑎⟩∥2 > 0 𝛿 ′ = 𝛿𝛿𝑘 Q ′(𝑙 ′⌢𝑙) = M𝑘 |𝑎⟩√
𝛿𝑘

𝜎 ′ = 𝜎 [𝑣 ⇐ 𝑒𝑘]
⟨(𝛿,Q, 𝜎), 𝑣 := measure(𝑒∗)⟩ { ⟨(𝛿 ′,Q ′, 𝜎 ′), skip⟩ Ms

(a) Non-faulty steps for quantum statements

⟨Γ, 𝑐1⟩ { abort
⟨Γ, 𝑐1; 𝑐2⟩ { abort Sa

𝑒𝑖 ∈ [[𝑒∗]]𝜎 𝑒𝑖 ∉ ΣQ
⟨(𝛿,Q, 𝜎), 𝑣 := measure(𝑒∗)⟩ { abort Ma

𝑒𝑖 ∈ [[𝑒∗]]𝜎 𝑒𝑖 ∉ ΣQ
⟨(𝛿,Q, 𝜎),G(𝑒∗)⟩ { abort Ta

𝑒𝑖 ∈ [[𝑞∗]]𝜎 𝑒𝑖 ∉ ΣQ
⟨(𝛿,Q, 𝜎), dispose(𝑞∗)⟩ { abort Da

(b) Faulty steps for abort

⟨Γ, skip; 𝑐⟩ { ⟨Γ, 𝑐⟩
⟨Γ, 𝑐1⟩ { ⟨Γ′, 𝑐 ′

1
⟩

⟨Γ, 𝑐1; 𝑐2⟩ { ⟨Γ′, 𝑐 ′
1
; 𝑐2⟩

𝜎 ′ = 𝜎 [𝑣 ⇐ [[𝑒]]𝜎]
⟨(𝛿,Q, 𝜎), 𝑣 := 𝑒⟩ { ⟨(𝛿,Q, 𝜎 ′), skip⟩

Γ = (𝛿,Q, 𝜎) [[𝑏]]𝜎 = true
⟨Γ, if 𝑏 do 𝑐1 else 𝑐2⟩ { ⟨Γ, 𝑐1⟩

Γ = (𝛿,Q, 𝜎) [[𝑏]]𝜎 = false
⟨Γ, if 𝑏 do 𝑐1 else 𝑐2⟩ { ⟨Γ, 𝑐2⟩

⟨Γ,while 𝑏 do 𝑐⟩ { ⟨Γ, if 𝑏 do {𝑐;while 𝑏 do 𝑐} else skip⟩

(c) Small step for standard statements

Fig. 18. Small step semantics for quantum programs

domain of the quantum heap. The steps for classical statements in Fig. 18c are standard and thus

self-explanatory.

7.4 Soundness
Our Hoare triples for partial correctness faithfully adopt the formalism in [Yang and O’Hearn 2002,

§3] for sequential SL. We say a config ⟨𝛿,Q, 𝜎⟩ is safe if it never leads to abort. Also, we let{∗

denote the closure of the step relation{. The triple {𝑃}𝑐{𝑄} is valid, denoted by |= {𝑃}𝑐{𝑄}, if
for any config 𝐶 = ⟨𝑠, 𝑐⟩ such that the state 𝑠 satisfies 𝑃 must satisfy the following conditions:

• (𝐶1) The config 𝐶 is safe, and

• (𝐶2) If 𝐶 leads to a final config 𝐶 ′ = ⟨𝑠 ′, skip⟩ (i.e. 𝐶 {∗ 𝐶 ′
) then 𝑠 ′ satisfies 𝑄 .

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 36. Publication date: January 2022.

AQuantum Interpretation of Separating Conjunction Based on Separation Logic 36:23

For total correctness, one can adopt the formalism in [Yang and O’Hearn 2002, §3] by including a

third condition (𝐶3) requiring there is no infinite sequence of steps starting from the initial config𝐶 .

We are now ready to state the main soundness result of our quantum rules in Fig. 6 and Fig. 7.

Theorem 7.4 (Soundness). If {𝑃}𝑐{𝑄} then |= {𝑃}𝑐{𝑄}.

The quantum core rules in Fig. 7 can be proven directly from the step semantics in 7.3. The

quantum frame rule QFrame — the heart of our reasoning framework — is proven with techniques

similar to its classical counterpart in [Yang and O’Hearn 2002, §4]. The following lemma provides

the key ingredients for the main proof:

Lemma 7.5. Let Q𝑃 ⊥ Q𝐹 and 𝛿𝑃 , 𝛿𝐹 ∈ (0, 1]. Then
(1) If ⟨(𝛿𝑃 ,Q𝑃 , 𝜎), 𝑐⟩ is safe then ⟨(𝛿𝑃𝛿𝐹 ,Q𝑃

⊗∪ Q𝐹 , 𝜎), 𝑐⟩ is also safe
(2) If ⟨(𝛿𝑃 ,Q𝑃 , 𝜎), 𝑐⟩ is safe and ⟨(𝛿𝑃𝛿𝐹 ,Q𝑃

⊗∪ Q𝐹 , 𝜎), 𝑐⟩ {∗ ⟨(𝛿 ′,Q ′, 𝜎 ′), 𝑐 ′⟩ then there exist
𝛿 ′
𝑃
∈ (0, 1] and Q ′

𝑃
such that:

(a) 𝛿 ′ = 𝛿 ′
𝑃
𝛿𝐹 and Q ′ = Q ′

𝑃
⊗∪ Q𝐹

(b) ⟨(𝛿𝑃 ,Q𝑃 , 𝜎), 𝑐⟩ {∗ ⟨(𝛿 ′
𝑃
,Q ′

𝑃
, 𝜎 ′), 𝑐 ′⟩.

Intuitively, the lemma says that if a config is safe in a small heap with the probability 𝛿𝑃 then it

is also safe in a bigger heap with the joint probability 𝛿𝑃𝛿𝐹 . Furthermore, the steps made by the

config with the bigger heap can be traced back to the steps made by the config with the small heap.

We are now ready to prove the frame rule QFrame.

Proof of QFrame. Let 𝛿,Q, 𝜎 |= 𝑃 ★◦ 𝐹 . Then there exist Q𝑃 , Q𝐹 and 𝛿𝑃 , 𝛿𝐹 ∈ (0, 1] such that:

(1) Q𝑃
⊗∪ Q𝐹 = Q and 𝛿𝑃𝛿𝐹 = 𝛿

(2) 𝛿𝑃 ,Q𝑃 , 𝜎 |= 𝑃 and 𝛿𝐹 ,Q𝐹 , 𝜎 |= 𝐹

On the other hand, the triple {𝑃}𝑐{𝑄} means that the config ⟨(𝛿𝑃 ,Q𝑃 , 𝜎), 𝑐⟩ is safe and if

⟨(𝛿𝑃 ,Q𝑃 , 𝜎), 𝑐⟩ {∗ ⟨(𝛿 ′,Q ′, 𝜎 ′), skip⟩ then 𝛿 ′,Q ′, 𝜎 ′ |= 𝑄 .

By Lemma. 7.5, it follows that ⟨(𝛿𝑃𝛿𝐹 ,Q𝑃
⊗∪ Q𝐹 , 𝜎), 𝑐⟩ is also safe. Let

⟨(𝛿𝑃𝛿𝐹 ,Q𝑃
⊗∪ Q𝐹 , 𝜎), 𝑐⟩ {∗ ⟨(𝛿 ′,Q ′, 𝜎 ′), skip⟩

Then there exist 𝛿 ′
𝑃
and Q ′

𝑃
such that:

(1) 𝛿 ′ = 𝛿 ′
𝑃
𝛿𝐹 and Q ′ = Q ′

𝑃
⊗∪ Q𝐹

(2) ⟨(𝛿𝑃 ,Q𝑃 , 𝜎), 𝑐⟩ {∗ ⟨(𝛿 ′
𝑃
,Q ′

𝑃
, 𝜎 ′), skip⟩

Hence 𝛿 ′
𝑃
,Q ′

𝑃
, 𝜎 ′ |= 𝑄 . Note that the side condition free(𝐹) ∩mod(𝑐) = ∅ implies [[𝑣]]𝜎 = [[𝑣]]𝜎′

for every variable 𝑣 in 𝐹 . Therefore 𝛿𝐹 ,Q𝐹 , 𝜎
′ |= 𝐹 and so 𝛿 ′

𝑃
𝛿𝐹 ,Q ′

𝑃
⊗∪ Q𝐹 , 𝜎

′ |= 𝑄 ★◦ 𝐹 . □

The other two rules Frame and FFrame can be derived from QFrame as follows.

Proof of PFrame. We apply the disjunctive rule over the two sub-proofs below.

(1) Case 1: 0 < 𝑒 ≤ 1. We apply the QFrame rule where the frame 𝐹 is 𝑒 · |emp⟩.

{𝑃}𝑐{𝑄}
mod(𝑐) ∩ free(𝑒) = ∅

mod(𝑐) ∩ free(𝑒 · |emp⟩ ∧ 0 < 𝑒 ≤ 1) = ∅
{(𝑒 · |emp⟩ ∧ 0 < 𝑒 ≤ 1) ★◦ 𝑃}𝑐{(𝑒 · |emp⟩ ∧ 0 < 𝑒 ≤ 1) ★◦ 𝑄}

QFrame

{𝑒 · 𝑃 ∧ 0 < 𝑒 ≤ 1}𝑐{𝑒 ·𝑄 ∧ 0 < 𝑒 ≤ 1}
{𝑒 · 𝑃 ∧ 0 < 𝑒 ≤ 1}𝑐{𝑒 ·𝑄}

P𝐼 , P
★◦, ★◦∧

, ★◦𝐼

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 36. Publication date: January 2022.

36:24 Xuan-Bach Le, Shang-Wei Lin, Jun Sun, and David Sanan

(2) Case 2: 𝑒 ≤ 0 or 𝑒 > 1. These cases are infeasible w.r.t. our semantics. And so we apply the

rule Bot in which the precondition is a contradiction.

{false}𝑐{𝑒 ·𝑄} Bot

{𝑒 · 𝑃 ∧ (𝑒 ≤ 0 ∨ 𝑒 > 1)}𝑐{𝑒 ·𝑄} P
⊥

□

Proof of Frame. We apply the QFrame rule where the frame 𝐹 is |emp⟩ ∧ 𝐹 .

{𝑃}𝑐{𝑄}
mod(𝑐) ∩ free(𝐹) = ∅

mod(𝑐) ∩ free(|emp⟩ ∧ 𝐹) = ∅
{𝑃 ★◦ (|emp⟩ ∧ 𝐹)}𝑐{𝑄 ★◦ (|emp⟩ ∧ 𝐹)}

QFrame

{𝑃 ∧ 𝐹 }𝑐{𝑄 ∧ 𝐹 }
★◦∧

, ★◦𝐼

□

7.5 Discussion on the Limitations of the Framework
In our step semantics (Fig. 18), the mixed states are split into pure states to enable local reasoning.

Although such interpretation is consistent with the standard model [Selinger and Valiron 2008], we

lose complete information about the probabilistic ensembles. Consequently, it is challenging to

express the notion of almost surely termination (e.g. [Li and Ying 2017; Zhou et al. 2019]), which is

defined based on the limit of the state distribution. Such limitation of the semantics also causes

incompleteness for computing the weakest precondition and strongest postcondition, as well as the

reasoning of probabilities. In particular, the postcondition of the measurement rule (Fig. 7) can only

be in disjunctive form which is not expressive enough to specify general probabilistic distributions.

For example, consider the following program where the two qubits 𝑞∗ [0] and 𝑞∗ [1] — each has the

state |+⟩ — are measured and then the results are added together:

𝑣0 := measure(𝑞∗ [0]); 𝑣1 := measure(𝑞∗ [1]); 𝑣 := 𝑣0 + 𝑣1;

The following postcondition is derived by our framework:(
𝑣 = 1 ∧ 1

4

· 𝑞∗ [0, 1] ↦→ |01⟩
)
∨

(
𝑣 = 1 ∧ 1

4

· 𝑞∗ [0, 1] ↦→ |10⟩
)
∨ . . . (29)

However, the disjunctive form above is too weak for us to prove that P(𝑣 = 1) = 1

4
+ 1

4
= 1

2
.

This boils down to the fact that our semantics treats the two outcomes above as two separate

computation paths and thus their probabilities cannot be combined to infer the exact probability

for pure predicate 𝑣 = 1. As a result, the probability for pure predicates in §5 is of the weak form

P(𝑄) = 𝑛𝑝 for some integer 𝑛 ≥ 1 — in this case 𝑝 = 1

4
and so P(𝑣 = 1) ∈ { 1

4
, 1
2
, 3
4
, 1} — so that it

can be interpreted consistently with our semantics for pure states tagged with probabilities and

also with the standard semantics for mixed states with complete probabilistic distributions.

To overcome the above problems, the semantics needs to be revised. A promising direction is to

come up with a structure for quantum states that can contain the entire state distribution while at

the same time remains applicable for local reasoning.

8 RELATEDWORKS
A comprehensive and complete framework of quantum Hoare logic was proposed by [Ying 2012],

which models quantum states using the density operator. Nevertheless, the framework is short of

treatments for local reasoning and classical variables. The work in [Feng and Ying 2021] integrates

classical states into quantum states using positive-operator valued distribution that maps each

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 36. Publication date: January 2022.

AQuantum Interpretation of Separating Conjunction Based on Separation Logic 36:25

classical state to an appropriate quantum state. Thework in [Zhou et al. 2021] enables local reasoning

for quantum computation using a quantum interpretation of the Bunched Implications [O’Hearn

and Pym 1999] for SL. Our framework improves from these works by supporting classical variables

directly in the semantics and also the dynamic allocation/deallocation of quantum qubits.

Based on Ying’s framework, the work in [Li and Ying 2017] reasons about almost surely termi-

nation of quantum programs via the synthesis of the linear ranking super-martingale, which can

be reduced to a problem in Semi-Definite Programming. The work in [Ying 2019] introduces the

notion of proof outline and auxiliary rules to support automatic reasoning for quantum programs.

The work in [Kakutani 2009] extends the probabilistic Hoare logic in [Hartog 1999] to reason about

quantum programs but the reasoning cannot be achieved locally.

On the other hand, various schemes of program reasoning besides normal Hoare logic have

been recently applied into the realm of quantum computing, e.g. Quantum Relational Hoare

Logics [Barthe et al. 2019; Li and Unruh 2021], predicate transformation [Chadha et al. 2006;

D’hondt and Panangaden 2006; Feng et al. 2007], testing and debugging [Huang and Martonosi

2019; Li et al. 2020]. Entailment rules for quantum systems were also studied in [Baez and Stay

2010] from the general viewpoint of category theory where 𝑃 ⊢ 𝑄 means that there exists a

morphism from the quantum state 𝑃 to the quantum state 𝑄 . For the mechanization of quantum

reasoning, there are the works of [Liu et al. 2019] that mechanizes Ying’s framework [Ying 2012]

in Isabelle/HOL [Naraschewski and Nipkow 2020], and of [Shi et al. 2021] that formalizes the

reasoning of quantum circuits in Coq [Bertot and Castéran 2013].

Our operational semantics §7 follows in the footsteps of the sequential semantics for SL in [Yang

and O’Hearn 2002] with a minor probability twist. For the last few decades, SL [O’Hearn et al.

2001; Reynolds 2002; Yang and O’Hearn 2002] has become a prominent framework for the local

reasoning of heap-manipulated programs. The assertion language of SL comes from the logic

of Bunched Implication [O’Hearn and Pym 1999], a comprehensive framework to reason about

resource ownership. For instance, memory cells are resources in SL whereas quantum qubits are

resources in our framework.

9 CONCLUSION
In this work, we have proposed an inference framework for quantum computation infused with

separation logic. Our framework directly supports classical variables and dynamic allocation/deallo-

cation of quantum qubits. We apply our framework to verify various quantum programs including

Deutsch–Jozsa’s algorithm and Grover’s algorithm. For future work, we plan to mechanize the

framework and develop verification techniques to support automatic reasoning.

ACKNOWLEDGMENTS
We would like to thank the anonymous reviewers and shepherds for their constructive comments,

especially for the discussion on the probability reasoning and the construct of the P–rule for

entailment. This work is supported by project MOE2018- T2-1-068 and project MOET32020-0004,

both are funded by the Singapore Ministry of Education.

REFERENCES
John C. Baez and Mike Stay. 2010. Physics, Topology, Logic and Computation: A Rosetta Stone. Lect. Notes Phys. 813 (2010),

95–172. https://doi.org/10.1007/978-3-642-12821-9_2

Gilles Barthe, Justin Hsu, Mingsheng Ying, Nengkun Yu, and Li Zhou. 2019. Relational Proofs for Quantum Programs. Proc.
ACM Program. Lang. 4, POPL, Article 21 (Dec. 2019), 29 pages. https://doi.org/10.1145/3371089

Charles H. Bennett, Ethan Bernstein, Gilles Brassard, and Umesh Vazirani. 1997. Strengths and Weaknesses of Quantum

Computing. SIAM J. Comput. 26, 5 (Oct. 1997), 1510–1523. https://doi.org/10.1137/S0097539796300933

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 36. Publication date: January 2022.

https://doi.org/10.1007/978-3-642-12821-9_2
https://doi.org/10.1145/3371089
https://doi.org/10.1137/S0097539796300933

36:26 Xuan-Bach Le, Shang-Wei Lin, Jun Sun, and David Sanan

Yves Bertot and Pierre Castéran. 2013. Interactive Theorem Proving and Program Development: Coq’Art: The Calculus of
Inductive Constructions. Springer Science & Business Media. https://doi.org/10.1007/978-3-662-07964-5

Benjamin Bichsel, Maximilian Baader, Timon Gehr, and Martin Vechev. 2020. Silq: A High-Level Quantum Language with

Safe Uncomputation and Intuitive Semantics. In PLDI. 286–300. https://doi.org/10.1145/3385412.3386007

C. Calcagno, P. W. O’Hearn, and H. Yang. 2007. Local Action and Abstract Separation Logic. In LICS. 366–378. https:

//doi.org/10.1109/LICS.2007.30

R. Chadha, P. Mateus, and A. Sernadas. 2006. Reasoning about Imperative Quantum Programs. Electronic Notes in Theoretical
Computer Science 158 (2006), 19–39. https://doi.org/10.1016/j.entcs.2006.04.003

Andrew W. Cross, Lev S. Bishop, John A. Smolin, and Jay M. Gambetta. 2017. Open Quantum Assembly Language.

https://arxiv.org/abs/1707.03429v2. arXiv:1707.03429 [quant-ph]

D Deutsch and R Jozsa. 1992. Rapid Solution of Problems by Quantum Computation. (1992). https://doi.org/10.1098/rspa.

1992.0167

Ellie D’hondt and Prakash Panangaden. 2006. Quantum Weakest Preconditions. Mathematical. Structures in Comp. Sci. 16, 3
(June 2006), 429–451. https://doi.org/10.1017/S0960129506005251

Yuan Feng, Runyao Duan, Zhengfeng Ji, and Mingsheng Ying. 2007. Proof Rules for the Correctness of Quantum Programs.

Theoretical Computer Science 386, 1 (2007), 151–166. https://doi.org/10.1016/j.tcs.2007.06.011

Yuan Feng and Mingsheng Ying. 2021. Quantum Hoare Logic with Classical Variables. arXiv:2008.06812 [cs.LO]

Google. 2018a. A Preview of Bristlecone, Google’s New Quantum Processor. https://ai.googleblog.com/2018/03/a-preview-

of-bristlecone-googles-new.html.

Google. 2018b. Google Cirq. https://github.com/quantumlib/Cirq.

Alexander S. Green, Peter LeFanu Lumsdaine, Neil J. Ross, Peter Selinger, and Benoît Valiron. 2013. Quipper: A Scalable

Quantum Programming Language. In PLDI. 333–342. https://doi.org/10.1145/2491956.2462177

Lov K. Grover. 1996. A Fast Quantum Mechanical Algorithm for Database Search. In STOC. 212–219. https://doi.org/10.

1145/237814.237866

J. I. den Hartog. 1999. Verifying Probabilistic Programs Using a Hoare Like Logic. In Proceedings of the 5th Asian Computing
Science Conference on Advances in Computing Science. 113–125. https://doi.org/10.1007/3-540-46674-6_11

C. A. R. Hoare. 1969. An Axiomatic Basis for Computer Programming. Commun. ACM 12, 10 (1969), 576–580. https:

//doi.org/10.1145/363235.363259

Yipeng Huang and Margaret Martonosi. 2019. Statistical Assertions for Validating Patterns and Finding Bugs in Quantum

Programs. In Proceedings of the 46th International Symposium on Computer Architecture. Association for Computing

Machinery, New York, NY, USA, 541–553. https://doi.org/10.1145/3307650.3322213

IBM. 2020. https://www.ibm.com/quantum-computing/.

Ali JavadiAbhari, Shruti Patil, Daniel Kudrow, Jeff Heckey, Alexey Lvov, Frederic T. Chong, and Margaret Martonosi.

2015. ScaffCC: Scalable Compilation and Analysis of Quantum Programs. Parallel Comput. 45 (2015), 2–17. https:

//doi.org/10.1145/2597917.2597939

Yoshihiko Kakutani. 2009. A Logic for Formal Verification of Quantum Programs. In Advances in Computer Science -
ASIAN 2009. Information Security and Privacy (Lecture Notes in Computer Science, Vol. 5913), Anupam Datta (Ed.). 79–93.

https://doi.org/10.1007/978-3-642-10622-4_7

Xuan-Bach Le and Aquinas Hobor. 2018. Logical Reasoning for Disjoint Permissions. In ESOPS (Lecture Notes in Computer
Science, Vol. 10801). 385–414. https://doi.org/10.1007/978-3-319-89884-1_14

Gushu Li, Li Zhou, Nengkun Yu, Yufei Ding, Mingsheng Ying, and Yuan Xie. 2020. Projection-Based Runtime Assertions

for Testing and Debugging Quantum Programs. Proc. ACM Program. Lang. 4, OOPSLA, Article 150 (2020), 29 pages.
https://doi.org/10.1145/3428218

Yangjia Li and Dominique Unruh. 2021. Quantum Relational Hoare Logic with Expectations. In ICALP (LIPIcs, Vol. 198).
136:1–136:20. https://doi.org/10.4230/LIPIcs.ICALP.2021.136

Yangjia Li and Mingsheng Ying. 2017. Algorithmic Analysis of Termination Problems for Quantum Programs. In POPL.
29 pages. https://doi.org/10.1145/3158123

Junyi Liu, Bohua Zhan, Shuling Wang, Shenggang Ying, Tao Liu, Yangjia Li, Mingsheng Ying, and Naijun Zhan. 2019. Formal

Verification of Quantum Algorithms Using Quantum Hoare Logic. In CAV. 187–207. https://doi.org/10.1007/978-3-030-

25543-5_12

Shusen Liu, Li Zhou, Ji Guan, Yang He, Runyao Duan, and Mingsheng Ying. 2017. 𝑄 |𝑆𝐼 ⟩ : A Quantum Programming

Environment. Scientia Sinica Informationis 47, 10 (2017), 1300–1315. https://doi.org/10.1360/N112017-00095

X. Liu and J. Kubiatowicz. 2013. Chisel-Q: Designing Quantum Circuits with a Scala Embedded Language. In ICCD. 427–434.
https://doi.org/10.1109/ICCD.2013.6657075

Wolfgang Naraschewski and Tobias Nipkow. 2020. Isabelle/HOL. http://www.cl.cam.ac.uk/research/hvg/Isabelle/

Peter O’Hearn, John Reynolds, and Hongseok Yang. 2001. Local Reasoning about Programs that Alter Data Structures. In

CSL. 1–19. https://doi.org/10.1007/3-540-44802-0_1

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 36. Publication date: January 2022.

https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1145/3385412.3386007
https://doi.org/10.1109/LICS.2007.30
https://doi.org/10.1109/LICS.2007.30
https://doi.org/10.1016/j.entcs.2006.04.003
https://arxiv.org/abs/1707.03429v2
https://arxiv.org/abs/1707.03429
https://doi.org/10.1098/rspa.1992.0167
https://doi.org/10.1098/rspa.1992.0167
https://doi.org/10.1017/S0960129506005251
https://doi.org/10.1016/j.tcs.2007.06.011
https://arxiv.org/abs/2008.06812
https://ai.googleblog.com/2018/03/a-preview-of-bristlecone-googles-new.html
https://ai.googleblog.com/2018/03/a-preview-of-bristlecone-googles-new.html
https://github.com/quantumlib/Cirq
https://doi.org/10.1145/2491956.2462177
https://doi.org/10.1145/237814.237866
https://doi.org/10.1145/237814.237866
https://doi.org/10.1007/3-540-46674-6_11
https://doi.org/10.1145/363235.363259
https://doi.org/10.1145/363235.363259
https://doi.org/10.1145/3307650.3322213
https://www.ibm.com/quantum-computing/
https://doi.org/10.1145/2597917.2597939
https://doi.org/10.1145/2597917.2597939
https://doi.org/10.1007/978-3-642-10622-4_7
https://doi.org/10.1007/978-3-319-89884-1_14
https://doi.org/10.1145/3428218
https://doi.org/10.4230/LIPIcs.ICALP.2021.136
https://doi.org/10.1145/3158123
https://doi.org/10.1007/978-3-030-25543-5_12
https://doi.org/10.1007/978-3-030-25543-5_12
https://doi.org/10.1360/N112017-00095
https://doi.org/10.1109/ICCD.2013.6657075
http://www.cl.cam.ac.uk/research/hvg/Isabelle/
https://doi.org/10.1007/3-540-44802-0_1

AQuantum Interpretation of Separating Conjunction Based on Separation Logic 36:27

Peter W. O’Hearn and David J. Pym. 1999. The Logic of Bunched Implications. The Bulletin of Symbolic Logic 5, 2 (1999),
215–244. https://doi.org/10.2307/421090

Jennifer Paykin, Robert Rand, and Steve Zdancewic. 2017. QWIRE: A Core Language for Quantum Circuits. In POPL.
846–858. https://doi.org/10.1145/3009837.3009894

J. C. Reynolds. 2002. Separation Logic: A Logic for Shared Mutable Data Structures. In LICS. 55–74. https://doi.org/10.1109/

LICS.2002.1029817

Peter Selinger and Benoît Valiron. 2005. A lambda calculus for quantum computation with classical control. In TLCA (Lecture
Notes in Computer Science, Vol. 3461). 354–368. https://doi.org/10.1007/11417170_26

Peter Selinger and Benoît Valiron. 2008. On a Fully Abstract Model for a Quantum Linear Functional Language. Electron.
Notes Theor. Comput. Sci. 210 (July 2008), 123–137. https://doi.org/10.1016/j.entcs.2008.04.022

Wenjun Shi, Qinxiang Cao, Yuxin Deng, Hanru Jiang, and Yuan Feng. 2021. Symbolic Reasoning about Quantum Circuits in

Coq. arXiv:2005.11023 [cs.PL]

P. W. Shor. 1994. Algorithms for Quantum Computation: Discrete Logarithms and Factoring. In FOCS. 124–134. https:

//doi.org/10.1109/SFCS.1994.365700

Damian S. Steiger, Thomas Häner, and Matthias Troyer. 2018. ProjectQ: An Open Source Software Framework for Quantum

Computing. Quantum 2 (2018), 49. https://doi.org/10.22331/q-2018-01-31-49

Krysta Svore, Alan Geller, Matthias Troyer, John Azariah, Christopher Granade, Bettina Heim, Vadym Kliuchnikov, Mariia

Mykhailova, Andres Paz, and Martin Roetteler. 2018. Q#: Enabling Scalable Quantum Computing and Development with

a High-Level DSL. In RWDSL. Article 7, 10 pages. https://doi.org/10.1145/3183895.3183901

Dave Wecker, Krysta M. Svore, and Krysta M. Svore. 2014. LIQUi | ⟩: A Software Design Architecture and Domain-Specific

Language for Quantum Computing. http://research.microsoft.com/en-us/projects/liquid/.

W. K. Wootters and W. H. Zurek. 1982. A Single Quantum Cannot Be Cloned. Nature 299, 5886 (28 Oct. 1982), 802–803.
https://doi.org/10.1038/299802a0

Hongseok Yang and Peter O’Hearn. 2002. A Semantic Basis for Local Reasoning. In FoSSaC. 402–416. https://doi.org/10.1007/3-
540-45931-6_28

Mingsheng Ying. 2012. Floyd–Hoare Logic for Quantum Programs. ACM Trans. Program. Lang. Syst. 33, 6, Article 19 (2012),
49 pages. https://doi.org/10.1145/2049706.2049708

Mingsheng Ying. 2019. Toward Automatic Verification of Quantum Programs. Formal Aspects of Computing 31 (2019), 3–25.

https://doi.org/10.1007/s00165-018-0465-3

Li Zhou, Gilles Barthe, Justin Hsu, Mingsheng Ying, and Nengkun Yu. 2021. A Quantum Interpretation of Bunched Logic &

Quantum Separation Logic. In LICS. 1–14. https://doi.org/10.1109/LICS52264.2021.9470673

Li Zhou, Nengkun Yu, and Mingsheng Ying. 2019. An Applied Quantum Hoare Logic. In PLDI. 1149–1162. https:

//doi.org/10.1145/3314221.3314584

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 36. Publication date: January 2022.

https://doi.org/10.2307/421090
https://doi.org/10.1145/3009837.3009894
https://doi.org/10.1109/LICS.2002.1029817
https://doi.org/10.1109/LICS.2002.1029817
https://doi.org/10.1007/11417170_26
https://doi.org/10.1016/j.entcs.2008.04.022
https://arxiv.org/abs/2005.11023
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.22331/q-2018-01-31-49
https://doi.org/10.1145/3183895.3183901
http://research.microsoft.com/en-us/projects/liquid/
https://doi.org/10.1038/299802a0
https://doi.org/10.1007/3-540-45931-6_28
https://doi.org/10.1007/3-540-45931-6_28
https://doi.org/10.1145/2049706.2049708
https://doi.org/10.1007/s00165-018-0465-3
https://doi.org/10.1109/LICS52264.2021.9470673
https://doi.org/10.1145/3314221.3314584
https://doi.org/10.1145/3314221.3314584

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Dirac Notation for Matrix Operators
	2.2 A Minimalist's View of Quantum Computing

	3 An Illustrative Example
	4 Languages for Quantum Programming and Reasoning
	4.1 Quantum Programming Language
	4.2 Assertion Language

	5 Inference Framework
	5.1 Quantum Frame Rule
	5.2 Quantum Core Rules
	5.3 Entailment Reasoning

	6 Case Studies
	6.1 Hadamard Transformation for Multiple Qbits
	6.2 Deutsch's Algorithm
	6.3 Deutsch–Jozsa's Algorithm
	6.4 Grover's Algorithm

	7 Operational Semantics
	7.1 Quantum Heaps
	7.2 Forcing Semantics
	7.3 Step Relation
	7.4 Soundness
	7.5 Discussion on the Limitations of the Framework

	8 Related Works
	9 Conclusion
	Acknowledgments
	References

